메뉴 건너뛰기




Volumn 37, Issue 1, 2005, Pages 83-102

A Birkhoff-Lewis-type theorem for some Hamiltonian PDEs

Author keywords

Birkhoff normal form; Infinite dimensional Hamiltonian systems; Periodic solutions; Perturbation theory; Variational methods

Indexed keywords

BIRKHOFF NORMAL FORM; PERIODIC SOLUTIONS; VARIATIONAL METHODS;

EID: 31144456366     PISSN: 00361410     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0036141003436107     Document Type: Article
Times cited : (19)

References (21)
  • 2
    • 85129735929 scopus 로고    scopus 로고
    • Lyapunov center theorems for some nonlinear PDE's: A simple proof
    • D. BAMBUSI, Lyapunov center theorems for some nonlinear PDE's: A simple proof, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), pp. 823-837.
    • (2000) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) , vol.29 , pp. 823-837
    • Bambusi, D.1
  • 3
    • 0037346777 scopus 로고    scopus 로고
    • Birkhoff normal form for some nonlinear PDEs
    • D. BAMBUSI, Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., 234 (2003), pp. 253-285.
    • (2003) Comm. Math. Phys. , vol.234 , pp. 253-285
    • Bambusi, D.1
  • 4
  • 5
    • 0002663649 scopus 로고    scopus 로고
    • Families of periodic solutions for resonant PDE's
    • D. BAMBUSI AND S. PALEARI, Families of periodic solutions for resonant PDE's, J. Nonlinear Science, 11 (2001), pp. 69-87.
    • (2001) J. Nonlinear Science , vol.11 , pp. 69-87
    • Bambusi, D.1    Paleari, S.2
  • 6
    • 8844237714 scopus 로고    scopus 로고
    • Periodic orbits close to elliptic tori and applications to the three-body problem
    • M. BERTI, L. BIASCO, AND E. VALDINOCI, Periodic orbits close to elliptic tori and applications to the three-body problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3 (2004), pp. 87-138.
    • (2004) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) , vol.3 , pp. 87-138
    • Berti, M.1    Biasco, L.2    Valdinoci, E.3
  • 7
    • 0345734391 scopus 로고    scopus 로고
    • Periodic solutions of nonlinear wave equations with general nonlinearities
    • M. BERTI AND P. BOLLE, Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys., 243 (2003), pp. 315-328.
    • (2003) Comm. Math. Phys. , vol.243 , pp. 315-328
    • Berti, M.1    Bolle, P.2
  • 8
    • 0742307263 scopus 로고    scopus 로고
    • Multiplicity of periodic solutions of nonlinear wave equations
    • M. BERTI AND P. BOLLE, Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Anal., 56 (2004), pp. 1001-1046.
    • (2004) Nonlinear Anal. , vol.56 , pp. 1001-1046
    • Berti, M.1    Bolle, P.2
  • 9
    • 0039452756 scopus 로고
    • On the periodic motions near a given periodic motion of a dynamical system
    • G. D. BIRKHOFF AND D. C. LEWIS, On the periodic motions near a given periodic motion of a dynamical system, Ann. Mat. Pura Appl., (4), 12 (1933), pp. 117-133.
    • (1933) Ann. Mat. Pura Appl., (4) , vol.12 , pp. 117-133
    • Birkhoff, G.D.1    Lewis, D.C.2
  • 10
    • 34249756262 scopus 로고
    • Construction of periodic solutions of nonlinear wave equations in higher dimension
    • J. BOURGAIN, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), pp. 629-639.
    • (1995) Geom. Funct. Anal. , vol.5 , pp. 629-639
    • Bourgain, J.1
  • 12
    • 84990576596 scopus 로고
    • Newton's method and periodic solutions of nonlinear wave equations
    • W. CRAIG AND C. E. WAYNE, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), pp. 1409-1498.
    • (1993) Comm. Pure Appl. Math. , vol.46 , pp. 1409-1498
    • Craig, W.1    Wayne, C.E.2
  • 13
    • 0037283998 scopus 로고    scopus 로고
    • KAM tori of Hamiltonian perturbations of 1D linear beam equations
    • J. GBNG AND J. You, KAM tori of Hamiltonian perturbations of 1D linear beam equations, J. Math. Anal. Appl., 277 (2003), pp. 104-121.
    • (2003) J. Math. Anal. Appl. , vol.277 , pp. 104-121
    • Gbng, J.1    You, J.2
  • 15
    • 0040157758 scopus 로고    scopus 로고
    • Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation
    • S. B. KUKSIN AND J. PÖSCHBL, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), pp. 149-179.
    • (1996) Ann. of Math. , vol.143 , pp. 149-179
    • Kuksin, S.B.1    Pöschbl, J.2
  • 17
    • 0013167493 scopus 로고
    • Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff
    • Geometry and Topology (Proc. III Lat. Am. Sch. Math., Inst. Mat. Pura Aplicada CNP, Rio de Janeiro, 1976), Springer-Verlag, Berlin
    • J. MOSER, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, in Geometry and Topology (Proc. III Lat. Am. Sch. Math., Inst. Mat. Pura Aplicada CNP, Rio de Janeiro, 1976), Lecture Notes in Math., 597, Springer-Verlag, Berlin, 1977, pp. 464-494.
    • (1977) Lecture Notes in Math. , vol.597 , pp. 464-494
    • Moser, J.1
  • 18
    • 85129605434 scopus 로고    scopus 로고
    • A KAM-theorem for some nonlinear partial differential equations
    • J. PÖSCHEL, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), pp. 119-148.
    • (1996) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) , vol.23 , pp. 119-148
    • Pöschel, J.1
  • 19
    • 0030443654 scopus 로고    scopus 로고
    • Quasi-periodic solutions for a nonlinear wave equation
    • J. PÖSCHEL, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), pp. 269-296.
    • (1996) Comment. Math. Helv. , vol.71 , pp. 269-296
    • Pöschel, J.1
  • 20
    • 0036801143 scopus 로고    scopus 로고
    • On the construction of almost periodic solutions for a nonlinear Schrödinger equation
    • J. PÖSCHEL, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems, 22 (2002), pp. 1537-1549.
    • (2002) Ergodic Theory Dynam. Systems , vol.22 , pp. 1537-1549
    • Pöschel, J.1
  • 21
    • 0000502263 scopus 로고
    • Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory
    • C. E. WAYNE, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., 127 (1990), pp. 479-528.
    • (1990) Commun. Math. Phys. , vol.127 , pp. 479-528
    • Wayne, C.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.