메뉴 건너뛰기




Volumn 10, Issue 4, 2001, Pages 429-441

Data mining for tunnel support stability: Neural network approach

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DATA MINING; GROUND SUPPORTS; NEURAL NETWORKS; REGRESSION ANALYSIS; ROCK MECHANICS; SEDIMENTARY ROCKS; SLOPE STABILITY;

EID: 0034836751     PISSN: 09265805     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0926-5805(00)00078-9     Document Type: Article
Times cited : (75)

References (37)
  • 1
    • 0002596236 scopus 로고    scopus 로고
    • Regularization neural network for construction cost estimation
    • H. Adeli, M.Y. Wu, Regularization neural network for construction cost estimation, J. Constr. Eng. Manage., Am. Soc. Civ. Eng. 124 (1) (1998) 18-24.
    • (1998) J. Constr. Eng. Manage., Am. Soc. Civ. Eng. , vol.124 , Issue.1 , pp. 18-24
    • Adeli, H.1    Wu, M.Y.2
  • 2
    • 0026632241 scopus 로고
    • Machine learning in knowledge acquisition
    • T. Arciszewski, L.A. Rossman (Eds.), ASCE, New York
    • T. Arciszewski, W. Ziarko, Machine learning in knowledge acquisition, in: T. Arciszewski, L.A. Rossman (Eds.), Knowledge Acquisition in Civil Engineering, ASCE, New York, 1992.
    • (1992) Knowledge Acquisition in Civil Engineering
    • Arciszewski, T.1    Ziarko, W.2
  • 3
    • 0016313398 scopus 로고
    • Engineering classification of rock masses for the design of tunnel support
    • N. Barton, R. Lien, J. Lunde, Engineering classification of rock masses for the design of tunnel support, Rock Mech. 6 (1974) 183-236.
    • (1974) Rock Mech. , vol.6 , pp. 183-236
    • Barton, N.1    Lien, R.2    Lunde, J.3
  • 8
    • 0019635932 scopus 로고
    • Putting the NATM in perspective
    • E.T. Brown, Putting the NATM in perspective, Tunnels Tunneling 13 (11) (1981) 13-17.
    • (1981) Tunnels Tunneling , vol.13 , Issue.11 , pp. 13-17
    • Brown, E.T.1
  • 10
    • 0031281709 scopus 로고    scopus 로고
    • Analysis of bridge condition rating data using neural networks
    • J. Cattan, J. Mohammadi, Analysis of bridge condition rating data using neural networks, Microcomput. Civ. Eng. 12 (1997) 419-429.
    • (1997) Microcomput. Civ. Eng. , vol.12 , pp. 419-429
    • Cattan, J.1    Mohammadi, J.2
  • 11
    • 0028417085 scopus 로고
    • Estimating construction productivity, neural-network-based approach
    • L.C. Chao, M.J. Skibniewski, Estimating construction productivity, neural-network-based approach, J. Comput. Civ. Eng., Am. Soc. Civ. Eng, 8 (2) (1994) 234-251.
    • (1994) J. Comput. Civ. Eng., Am. Soc. Civ. Eng , vol.8 , Issue.2 , pp. 234-251
    • Chao, L.C.1    Skibniewski, M.J.2
  • 12
    • 0342762133 scopus 로고
    • Application of NATM to design of underground station in London clay
    • Chapman & Hall, London
    • A.P. Deane, Application of NATM to design of underground station in London clay, Proceedings of 7th International Symposium of Tunneling, Chapman & Hall, London, 1994, pp. 87-97.
    • (1994) Proceedings of 7th International Symposium of Tunneling , pp. 87-97
    • Deane, A.P.1
  • 13
    • 0028416331 scopus 로고
    • Neural networks in civil engineering: I. Principles and understanding
    • I. Flood, N. Kartam, Neural networks in civil engineering: I. Principles and understanding, J. Comput. Civ. Eng., Am. Soc. Civ. Eng. 8 (2) (1994) 131-148.
    • (1994) J. Comput. Civ. Eng., Am. Soc. Civ. Eng. , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 14
    • 0030190038 scopus 로고    scopus 로고
    • Models of construction process information
    • T. Froese, Models of construction process information, J. Comput. Civ. Eng., Am. Soc. Civ. Eng. 10 (3) (1996) 183-193.
    • (1996) J. Comput. Civ. Eng., Am. Soc. Civ. Eng. , vol.10 , Issue.3 , pp. 183-193
    • Froese, T.1
  • 15
    • 0029223565 scopus 로고
    • Back-propagation neural network for modeling complex systems
    • A.T.C. Goh, Back-propagation neural network for modeling complex systems, Artif. Intell. Eng. 9 (1995) 143-151.
    • (1995) Artif. Intell. Eng. , vol.9 , pp. 143-151
    • Goh, A.T.C.1
  • 18
    • 0024137490 scopus 로고
    • Increasing rates for convergence through learning rate adaptation
    • R.A. Jacobs, Increasing rates for convergence through learning rate adaptation, Neural Networks 1 (1988) 295-307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 19
    • 0001940458 scopus 로고
    • Adaptive mixture of local experts
    • R.A. Jacobs et al., Adaptive mixture of local experts, Neural Comput. 3 (1991) 79-87.
    • (1991) Neural Comput. , vol.3 , pp. 79-87
    • Jacobs, R.A.1
  • 23
    • 0026899193 scopus 로고
    • Using radial basis functions to approximate a function and its error bounds
    • J.A. Leonard, M.A. Kramer, L.H. Ungar, Using radial basis functions to approximate a function and its error bounds, IEEE Trans. Neural Networks 3 (4) (1992) 624-627.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.4 , pp. 624-627
    • Leonard, J.A.1    Kramer, M.A.2    Ungar, L.H.3
  • 25
    • 0001418861 scopus 로고
    • Acceleration of back propagation through learning rate and momentum rate adaptation
    • A.A. Minai, R.D. Williams, Acceleration of back propagation through learning rate and momentum rate adaptation, Int. Jt. Conf. Neural Networks 1 (1990) 676-679.
    • (1990) Int. Jt. Conf. Neural Networks , vol.1 , pp. 676-679
    • Minai, A.A.1    Williams, R.D.2
  • 26
    • 0018020446 scopus 로고
    • Removing misconceptions on the New Austrian Tunneling Method
    • L. Muller, Removing misconceptions on the New Austrian Tunneling Method, Tunnels Tunneling 10 (1978) 29-32.
    • (1978) Tunnels Tunneling , vol.10 , pp. 29-32
    • Muller, L.1
  • 28
    • 0031188065 scopus 로고    scopus 로고
    • Machine learning techniques for civil engineering problems
    • Y. Reich, Machine learning techniques for civil engineering problems, Microcomput. Civ. Eng. 12 (1997) 295-310.
    • (1997) Microcomput. Civ. Eng. , vol.12 , pp. 295-310
    • Reich, Y.1
  • 29
    • 0028416468 scopus 로고
    • Simulating structural analysis with neural networks
    • J.L. Roger, Simulating structural analysis with neural networks, J. Comput. Civ. Eng., Am. Soc. Civ. Eng. 8 (2) (1994) 252-265.
    • (1994) J. Comput. Civ. Eng., Am. Soc. Civ. Eng. , vol.8 , Issue.2 , pp. 252-265
    • Roger, J.L.1
  • 31
    • 0342327411 scopus 로고
    • The Assessment of Tunnel Stability on the Basis of Field Measurements
    • Rimini, Italy
    • S. Sakurai, The Assessment of Tunnel Stability on the Basis of Field Measurements, 18th Convegno Nazionale Di Geotechnica, Rimini, Italy, 1993, pp. 1-10.
    • (1993) 18th Convegno Nazionale di Geotechnica , pp. 1-10
    • Sakurai, S.1
  • 32
    • 0031654183 scopus 로고    scopus 로고
    • Comparison of fuzzy and neural classifiers for road accident analysis
    • T. Sayed, W. Abdelwahab, Comparison of fuzzy and neural classifiers for road accident analysis, J. Comput. Civ. Eng., Am. Soc. Civ. Eng. 12 (1) (1998) 42-47.
    • (1998) J. Comput. Civ. Eng., Am. Soc. Civ. Eng. , vol.12 , Issue.1 , pp. 42-47
    • Sayed, T.1    Abdelwahab, W.2
  • 33
    • 0030195306 scopus 로고    scopus 로고
    • Object-oriented model for integrating construction product and process information
    • A.L. Stumpf et al., Object-oriented model for integrating construction product and process information, J. Comput. Civ. Eng., Am. Soc. Civ. Eng. 10 (3) (1996) 204-212.
    • (1996) J. Comput. Civ. Eng., Am. Soc. Civ. Eng. , vol.10 , Issue.3 , pp. 204-212
    • Stumpf, A.L.1
  • 34
    • 0031126911 scopus 로고    scopus 로고
    • Prediction of pile capacity using neural network
    • C.I. Teh et al., Prediction of pile capacity using neural network, J. Comput. Civ. Eng., Am. Soc. Civ. Eng. 11 (2) (1997) 129-138.
    • (1997) J. Comput. Civ. Eng., Am. Soc. Civ. Eng. , vol.11 , Issue.2 , pp. 129-138
    • Teh, C.I.1
  • 36
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural network
    • R.L. Wilson, R. Sharda, Bankruptcy prediction using neural network, Decis. Support Syst. 11 (1994) 545-557.
    • (1994) Decis. Support Syst. , vol.11 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.