-
2
-
-
0013198591
-
The extreme members of a sample and their role in the sum of independent variables
-
AROV, D. Z. and BOBROV, A. A. (1960). The extreme members of a sample and their role in the sum of independent variables. Tear. Veroyatnost. i Primenen. S 415-435.
-
(1960)
Tear. Veroyatnost. i Primenen
, vol.5
, pp. 415-435
-
-
Arov, D.Z.1
Bobrov, A.A.2
-
3
-
-
21344464403
-
A Berry-Esséen bound for Student's statistic in the non-i.i.d. case
-
BENTKUS, V., BLOZNELIS, M. and GÖTZE, F. (1996). A Berry-Esséen bound for Student's statistic in the non-i.i.d. case. J. Theoret. Probab. 9 765-796.
-
(1996)
J. Theoret. Probab.
, vol.9
, pp. 765-796
-
-
Bentkus, V.1
Bloznelis, M.2
Götze, F.3
-
4
-
-
0038877700
-
The Berry-Esseen bound for Student's statistic
-
BENTKUS, V. and GÖTZE, F. (1996). The Berry-Esseen bound for Student's statistic. Ann. Probab. 24 491-503.
-
(1996)
Ann. Probab.
, vol.24
, pp. 491-503
-
-
Bentkus, V.1
Götze, F.2
-
5
-
-
0040644411
-
An Edgeworth expansion for symmetric statistics
-
BENTKUS, V., GÖTZE, F. and VAN ZWET, W. R. (1997). An Edgeworth expansion for symmetric statistics. Ann. Statist. 25 851-896.
-
(1997)
Ann. Statist.
, vol.25
, pp. 851-896
-
-
Bentkus, V.1
Götze, F.2
Van Zwet, W.R.3
-
6
-
-
0000640312
-
The Edgeworth expansion for U-statistics of degree two
-
BICKEL, P. J., GÖTZE, F. and VAN ZWET, W. R. (1986). The Edgeworth expansion for U-statistics of degree two. Ann. Statist. 14 1463-1484.
-
(1986)
Ann. Statist.
, vol.14
, pp. 1463-1484
-
-
Bickel, P.J.1
Götze, F.2
Van Zwet, W.R.3
-
8
-
-
3042514949
-
Second order and bootstrap approximation to Student's statistic
-
BLOZNELIS, M. and PUTTER, H. (2002). Second order and bootstrap approximation to Student's statistic. Theor. Veroyatnost. i Primenen. 47 374-381.
-
(2002)
Theor. Veroyatnost. i Primenen.
, vol.47
, pp. 374-381
-
-
Bloznelis, M.1
Putter, H.2
-
10
-
-
3042566735
-
Asymptotic expansion for the distribution of statistics admitting a stochastic expansion. I
-
CHIBISOV, D. M. (1980). Asymptotic expansion for the distribution of statistics admitting a stochastic expansion. I. Teor. Veroyatnost. i Primenen. 25 745-756.
-
(1980)
Teor. Veroyatnost. i Primenen.
, vol.25
, pp. 745-756
-
-
Chibisov, D.M.1
-
11
-
-
0040899490
-
Asymptotic expansions and deficiencies of tests
-
(Z. Ciesielski and C. Olech, eds.). PWN, Warsaw
-
CHIBISOV, D. M. (1984). Asymptotic expansions and deficiencies of tests. In Proceedings of the International Congress of Mathematicians (Z. Ciesielski and C. Olech, eds.) 1 1063-1079. PWN, Warsaw.
-
(1984)
Proceedings of the International Congress of Mathematicians
, vol.1
, pp. 1063-1079
-
-
Chibisov, D.M.1
-
12
-
-
84985631334
-
Relaxing assumptions in the one-sample t-test
-
CRESSIE, N. (1980). Relaxing assumptions in the one-sample t-test. Austral. J. Statist. 22 143-153.
-
(1980)
Austral. J. Statist.
, vol.22
, pp. 143-153
-
-
Cressie, N.1
-
13
-
-
0009253021
-
The influence of the maximum term in the addition of independent random variables
-
DARLING, D. A. (1952). The influence of the maximum term in the addition of independent random variables. Trans. Amer. Math. Soc. 73 95-107.
-
(1952)
Trans. Amer. Math. Soc.
, vol.73
, pp. 95-107
-
-
Darling, D.A.1
-
14
-
-
84972515114
-
Extremal processes. II
-
DWASS, M. (1966). Extremal processes. II. Illinois J. Math. 10 381-391.
-
(1966)
Illinois J. Math.
, vol.10
, pp. 381-391
-
-
Dwass, M.1
-
15
-
-
0000753064
-
Student's t-test under symmetry conditions
-
EFRON, B. (1969). Student's t-test under symmetry conditions. J. Amer. Statist. Assoc. 64 1278-1302.
-
(1969)
J. Amer. Statist. Assoc.
, vol.64
, pp. 1278-1302
-
-
Efron, B.1
-
16
-
-
0012947984
-
On the asymptotic behavior of self-normalized sums of random variables
-
EGOROV, V. A. (1996). On the asymptotic behavior of self-normalized sums of random variables. Tear. Veroyatnost. i Primenen. 41 643-650.
-
(1996)
Tear. Veroyatnost. i Primenen.
, vol.41
, pp. 643-650
-
-
Egorov, V.A.1
-
17
-
-
0001161575
-
A Berry-Esseen bound for functions of independent random variables
-
FRIEDRICH, K. O. (1989). A Berry-Esseen bound for functions of independent random variables. Ann. Statist. 17 170-183.
-
(1989)
Ann. Statist.
, vol.17
, pp. 170-183
-
-
Friedrich, K.O.1
-
18
-
-
0008976239
-
The distribution of "Student's" t in random samples of any size drawn from nonnormal universes
-
GAYEN, A. K. (1949). The distribution of "Student's" t in random samples of any size drawn from nonnormal universes. Biometrika 36 353-369.
-
(1949)
Biometrika
, vol.36
, pp. 353-369
-
-
Gayen, A.K.1
-
19
-
-
0006845047
-
Significance of difference between the means of two nonnormal samples
-
GAYEN, A. K. (1950). Significance of difference between the means of two nonnormal samples. Biometrika 37 399-408.
-
(1950)
Biometrika
, vol.37
, pp. 399-408
-
-
Gayen, A.K.1
-
20
-
-
84862391405
-
The inverse hyperbolic sine transformation on Student's t for nonnormal samples
-
GAYEN, A. K. (1952). The inverse hyperbolic sine transformation on Student's t for nonnormal samples. Sankhyā 12 105-108.
-
(1952)
Sankhyā
, vol.12
, pp. 105-108
-
-
Gayen, A.K.1
-
21
-
-
0039378037
-
When is the Student t-statistic asymptotically standard normal?
-
GINÉ, E., GÖTZE, F. and MASON, D. (1997). When is the Student t-statistic asymptotically standard normal? Ann. Probab. 25 1514-1531.
-
(1997)
Ann. Probab.
, vol.25
, pp. 1514-1531
-
-
Giné, E.1
Götze, F.2
Mason, D.3
-
22
-
-
0345399126
-
The probable error of a mean
-
GOSSETT, W. S. (1908). The probable error of a mean. Biometrika 6 1-25.
-
(1908)
Biometrika
, vol.6
, pp. 1-25
-
-
Gossett, W.S.1
-
24
-
-
0009908275
-
Distinctions between the regular and empirical central limit theorems for exchangeable random variables
-
HAHN, M. G. and ZHANG, G. (1998). Distinctions between the regular and empirical central limit theorems for exchangeable random variables. Progr. Probab. 43 111-143.
-
(1998)
Progr. Probab.
, vol.43
, pp. 111-143
-
-
Hahn, M.G.1
Zhang, G.2
-
25
-
-
0000401373
-
On the extreme terms of a sample from the domain of attraction of a stable law
-
HALL, P. (1978). On the extreme terms of a sample from the domain of attraction of a stable law. J. London Math. Soc. 18 181-191.
-
(1978)
J. London Math. Soc.
, vol.18
, pp. 181-191
-
-
Hall, P.1
-
27
-
-
3042661762
-
On the influence of extremes on the rate of convergence in the central limit theorem
-
HALL, P. (1984). On the influence of extremes on the rate of convergence in the central limit theorem. Ann. Probab. 12 154-172.
-
(1984)
Ann. Probab.
, vol.12
, pp. 154-172
-
-
Hall, P.1
-
28
-
-
0000658406
-
Edgeworth expansion for Student's t statistic under minimal moment conditions
-
HALL, P. (1987). Edgeworth expansion for Student's t statistic under minimal moment conditions. Ann. Probab. 15 920-931.
-
(1987)
Ann. Probab.
, vol.15
, pp. 920-931
-
-
Hall, P.1
-
29
-
-
0000784285
-
On the effect of random norming on the rate of convergence in the central limit theorem
-
HALL, P. (1988). On the effect of random norming on the rate of convergence in the central limit theorem. Ann. Probab. 16 1265-1280.
-
(1988)
Ann. Probab.
, vol.16
, pp. 1265-1280
-
-
Hall, P.1
-
31
-
-
84862386889
-
Exact convergence rate and leading term in central limit theorem for Student's t statistic
-
Centre for Mathematics and Its Applications, Australian National University
-
HALL, P. and WANG, Q. (2003). Exact convergence rate and leading term in central limit theorem for Student's t statistic. Statistics Research Reports SRR03-001, Centre for Mathematics and Its Applications, Australian National University. Available at wwwmaths.anu.edu.au/research.reports.
-
(2003)
Statistics Research Reports
, vol.SRR03-001
-
-
Hall, P.1
Wang, Q.2
-
32
-
-
3042563089
-
Distribution of "Student"-Fisher's t in samples from compound normal functions
-
HYRENIUS, H. (1950). Distribution of "Student"-Fisher's t in samples from compound normal functions. Biometrika 37 429-442.
-
(1950)
Biometrika
, vol.37
, pp. 429-442
-
-
Hyrenius, H.1
-
33
-
-
0000994389
-
Convergence to a stable distribution via order statistics
-
LEPAGE, R., WOODROOFE, M. and ZINN, J. (1981). Convergence to a stable distribution via order statistics. Ann. Probab. 9 624-632.
-
(1981)
Ann. Probab.
, vol.9
, pp. 624-632
-
-
Lepage, R.1
Woodroofe, M.2
Zinn, J.3
-
34
-
-
0001172340
-
Limit distributions of self-normalized sums
-
LOGAN, B. F., MALLOWS, C. L., RICE, S. O. and SHEPP, L. A. (1973). Limit distributions of self-normalized sums. Ann. Probab. 1 788-809.
-
(1973)
Ann. Probab.
, vol.1
, pp. 788-809
-
-
Logan, B.F.1
Mallows, C.L.2
Rice, S.O.3
Shepp, L.A.4
-
36
-
-
0001876541
-
Limits for a distribution, if the characteristic function is given in a finite domain
-
PRAWITZ, H. (1972). Limits for a distribution, if the characteristic function is given in a finite domain. Skand. Aktuarietidskr. 55 138-154.
-
(1972)
Skand. Aktuarietidskr.
, vol.55
, pp. 138-154
-
-
Prawitz, H.1
-
37
-
-
0041171600
-
Empirical edgeworth expansions for symmetric statistics
-
PUTTER, H. and VAN ZWET, W. R. (1998). Empirical Edgeworth expansions for symmetric statistics. Ann. Statist. 26 1540-1569.
-
(1998)
Ann. Statist.
, vol.26
, pp. 1540-1569
-
-
Putter, H.1
Van Zwet, W.R.2
-
38
-
-
0002095272
-
Point processes, regular variation and weak convergence
-
RESNICK, S. I. (1986). Point processes, regular variation and weak convergence. Adv. in Appl. Probab. 18 66-138.
-
(1986)
Adv. in Appl. Probab.
, vol.18
, pp. 66-138
-
-
Resnick, S.I.1
-
40
-
-
0000654995
-
A Berry-Esseen bound for symmetric statistics
-
VAN ZWET, W. R. (1984). A Berry-Esseen bound for symmetric statistics. Z Wahrsch. Verw. Gebiete 66 425-440.
-
(1984)
Z Wahrsch. Verw. Gebiete
, vol.66
, pp. 425-440
-
-
Van Zwet, W.R.1
-
41
-
-
0001140504
-
Asymptotic approximations to distributions
-
WALLACE, D. L. (1958). Asymptotic approximations to distributions. Ann. Math. Statist. 29 635-654.
-
(1958)
Ann. Math. Statist.
, vol.29
, pp. 635-654
-
-
Wallace, D.L.1
-
42
-
-
0033212383
-
An exponential nonuniform Berry-Esseen bound for self-normalized sums
-
WANG, Q. and JING, B.-Y. (1999). An exponential nonuniform Berry-Esseen bound for self-normalized sums. Ann. Probab. 27 2068-2088.
-
(1999)
Ann. Probab.
, vol.27
, pp. 2068-2088
-
-
Wang, Q.1
Jing, B.-Y.2
-
43
-
-
0033630625
-
The Berry-Esseen bound for Studentized statistics
-
WANG, Q., JING, B.-Y. and ZHAO, L. C. (2000). The Berry-Esseen bound for Studentized statistics. Ann. Probab. 28 511-535.
-
(2000)
Ann. Probab.
, vol.28
, pp. 511-535
-
-
Wang, Q.1
Jing, B.-Y.2
Zhao, L.C.3
|