-
1
-
-
0040644411
-
An Edgeworth expansion for symmetric statistics
-
BENTKUS, V., GÖTZE, F. and VAN ZWET, W. R. (1997). An Edgeworth expansion for symmetric statistics. Ann. Statist. 25 851-896.
-
(1997)
Ann. Statist.
, vol.25
, pp. 851-896
-
-
Bentkus, V.1
Götze, F.2
Van Zwet, W.R.3
-
2
-
-
0000640312
-
The Edgeworth expansion for U-statistics of degree 2
-
BICKEL, P. J., GÖTZE, F. and VAN ZWET, W. R. (1986). The Edgeworth expansion for U-statistics of degree 2. Ann. Statist. 14 1463-1484.
-
(1986)
Ann. Statist.
, vol.14
, pp. 1463-1484
-
-
Bickel, P.J.1
Götze, F.2
Van Zwet, W.R.3
-
3
-
-
0000135976
-
The order of the normal approximation for a Studentized U-statistic
-
CALLAERT, H. and VERAVERBEKE, N. (1981). The order of the normal approximation for a Studentized U-statistic. Ann. Statist. 9 194-200.
-
(1981)
Ann. Statist.
, vol.9
, pp. 194-200
-
-
Callaert, H.1
Veraverbeke, N.2
-
5
-
-
0001668461
-
On the Edgeworth expansion and the bootstrap approximation for a Studentized U-statistic
-
HELMERS, R. (1991). On the Edgeworth expansion and the bootstrap approximation for a Studentized U-statistic. Ann. Statist. 19 470-484.
-
(1991)
Ann. Statist.
, vol.19
, pp. 470-484
-
-
Helmers, R.1
-
6
-
-
0001744704
-
A class of statistics with asymptotically normal distribution
-
HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 293-325.
-
(1948)
Ann. Math. Statist.
, vol.19
, pp. 293-325
-
-
Hoeffding, W.1
-
9
-
-
0002718318
-
Approximate tests of correlation in time series
-
QUENOUILLE, M. H. (1949). Approximate tests of correlation in time series. J. Roy. Statist. Soc. Ser. B 11 68-84.
-
(1949)
J. Roy. Statist. Soc. Ser. B
, vol.11
, pp. 68-84
-
-
Quenouille, M.H.1
-
10
-
-
0001610304
-
Notes on bias in estimation
-
QUENOUILLE, M. H. (1956). Notes on bias in estimation. Biometrika 43 353-360.
-
(1956)
Biometrika
, vol.43
, pp. 353-360
-
-
Quenouille, M.H.1
-
11
-
-
0001617782
-
Bias and confidence in not-quite large samples
-
abstract
-
TUKEY, J. W. (1958). Bias and confidence in not-quite large samples. Ann. Math. Statist. 29 614 (abstract).
-
(1958)
Ann. Math. Statist.
, vol.29
, pp. 614
-
-
Tukey, J.W.1
-
12
-
-
0000654995
-
A Berry-Esseen bound for symmetric statistics
-
VAN ZWET, W. R. (1984). A Berry-Esseen bound for symmetric statistics. Z. Wahrsch. Verw. Gebiete 66 425-440.
-
(1984)
Z. Wahrsch. Verw. Gebiete
, vol.66
, pp. 425-440
-
-
Van Zwet, W.R.1
-
13
-
-
0000095168
-
Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2
-
VON BAHR, B. and ESSEEN C. G. (1965). Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2. Ann. Math. Statist. 36 299-303.
-
(1965)
Ann. Math. Statist.
, vol.36
, pp. 299-303
-
-
Von Bahr, B.1
Esseen, C.G.2
|