메뉴 건너뛰기




Volumn 262, Issue 1, 2006, Pages 17-32

Semi-focusing billiards: Hyperbolicity

Author keywords

[No Author keywords available]

Indexed keywords


EID: 29644443557     PISSN: 00103616     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00220-005-1473-8     Document Type: Article
Times cited : (18)

References (26)
  • 1
    • 0003319234 scopus 로고
    • Mathematical methods of classical mechanics
    • [A], Berlin-Heidelberg-New York: Springer-Verlag
    • [A] Arnold, V.: Mathematical methods of classical mechanics. Graduate Texts in Mathematics 60, Berlin-Heidelberg-New York: Springer-Verlag, 1989
    • (1989) Graduate Texts in Mathematics , vol.60
    • Arnold, V.1
  • 2
    • 29444443343 scopus 로고
    • On the ergodic properties of nowhere dispersing billiards
    • [B1]
    • [B1] Bunimovich, L.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65, 295-312 (1979)
    • (1979) Commun. Math. Phys. , vol.65 , pp. 295-312
    • Bunimovich, L.1
  • 3
    • 45449122060 scopus 로고
    • Many-dimensional nowhere dispersing billiards with chaotic behavior
    • [B2]
    • [B2] Bunimovich, L.: Many-dimensional nowhere dispersing billiards with chaotic behavior. Physica D 33, 58-64 (1988)
    • (1988) Physica D , vol.33 , pp. 58-64
    • Bunimovich, L.1
  • 5
    • 0035648602 scopus 로고    scopus 로고
    • Mushrooms and other billiards with divided phase space
    • [B4]
    • [B4] Bunimovich, L.: Mushrooms and other billiards with divided phase space. Chaos 11(4), 1-7 (2001)
    • (2001) Chaos , vol.11 , Issue.4 , pp. 1-7
    • Bunimovich, L.1
  • 6
    • 0031549891 scopus 로고    scopus 로고
    • Nowhere dispersing 3D billiards with non-vanishing Lyapunov exponents
    • [B-R1]
    • [B-R1] Bunimovich, L., Rehacek, J.: Nowhere dispersing 3D billiards with non-vanishing Lyapunov exponents. Commun. Math. Phys. 189, 729-757 (1997)
    • (1997) Commun. Math. Phys. , vol.189 , pp. 729-757
    • Bunimovich, L.1    Rehacek, J.2
  • 7
    • 0000589687 scopus 로고    scopus 로고
    • On the ergodicity of many-dimensional focusing billiards, Classical and quantum chaos
    • [B-R2]
    • [B-R2] Bunimovich, L., Rehacek, J.: On the ergodicity of many-dimensional focusing billiards, Classical and quantum chaos. Ann. Inst. H. Poincaré Phys.Théor. 68(4), 421-448 (1998)
    • (1998) Ann. Inst. H. Poincaré Phys. Théor. , vol.68 , Issue.4 , pp. 421-448
    • Bunimovich, L.1    Rehacek, J.2
  • 8
    • 0032186754 scopus 로고    scopus 로고
    • How high-dimensional stadia look like
    • [B-R3]
    • [B-R3] Bunimovich, L., Rehacek, J.: How high-dimensional stadia look like. Commun. Math. Phys. 197(2), 277-301 (1998)
    • (1998) Commun. Math. Phys. , vol.197 , Issue.2 , pp. 277-301
    • Bunimovich, L.1    Rehacek, J.2
  • 9
    • 51249161430 scopus 로고
    • Entropy of non-uniformly hyperbolic plane billiards
    • [C-M]
    • [C-M] Chernov, N., Markarian, R.: Entropy of non-uniformly hyperbolic plane billiards. Bol. Soc. Bras. Mat. 23, 121-135 (1992)
    • (1992) Bol. Soc. Bras. Mat. , vol.23 , pp. 121-135
    • Chernov, N.1    Markarian, R.2
  • 11
    • 0001703406 scopus 로고
    • Using integrability to produce chaos: Billiards with positive entropy
    • [D]
    • [D] Donnay, V.: Using integrability to produce chaos: billiards with positive entropy. Commun. Math. Phys. 141, 225-257 (1991)
    • (1991) Commun. Math. Phys. , vol.141 , pp. 225-257
    • Donnay, V.1
  • 12
    • 84968496754 scopus 로고
    • Strange billiard tables
    • [H]
    • [H] Halpern, B.: Strange billiard tables. Trans. Amer. Math. Soc. 232, 297-305 (1977)
    • (1977) Trans. Amer. Math. Soc. , vol.232 , pp. 297-305
    • Halpern, B.1
  • 13
    • 0001043657 scopus 로고
    • Ergodicity in Hamiltonian systems
    • [L-W], Berlin-Heidelberg-New York: Springer-Verlag
    • [L-W] Liverani, C., Wojtkowski, M.: Ergodicity in Hamiltonian systems. Dynamics Reported 4, Berlin-Heidelberg-New York: Springer-Verlag, 1995
    • (1995) Dynamics Reported , vol.4
    • Liverani, C.1    Wojtkowski, M.2
  • 14
    • 0002472059 scopus 로고
    • Billiards with Pesin region of measure one
    • [M]
    • [M] Markarian, R.: Billiards with Pesin region of measure one. Commun. Math. Phys. 118, 87-97 (1988)
    • (1988) Commun. Math. Phys. , vol.118 , pp. 87-97
    • Markarian, R.1
  • 15
    • 18744423561 scopus 로고    scopus 로고
    • Collective and chaotic motion in self-bound many-body systems
    • [P1]
    • [P1] Papenbrock, T.: Collective and chaotic motion in self-bound many-body systems. Phys. Rev. C 61, 034602 (2000)
    • (2000) Phys. Rev. C , vol.61 , pp. 034602
    • Papenbrock, T.1
  • 16
    • 5244381697 scopus 로고    scopus 로고
    • Lyapunov exponents and Kolmogorov-Sinai entropy for a high-dimensional convex billiard
    • [P2]
    • [P2] Papenbrock, T.: Lyapunov exponents and Kolmogorov-Sinai entropy for a high-dimensional convex billiard. Phys. Rev. E 61, 1337-1341 (2000)
    • (2000) Phys. Rev. E , vol.61 , pp. 1337-1341
    • Papenbrock, T.1
  • 17
    • 0010112838 scopus 로고    scopus 로고
    • Numerical study of a three-dimensional generalized stadium billiard
    • [P3]
    • [P3] Papenbrock, T.: Numerical study of a three-dimensional generalized stadium billiard. Phys. Rev. E 61, 4626-4628 (2000)
    • (2000) Phys. Rev. E , vol.61 , pp. 4626-4628
    • Papenbrock, T.1
  • 18
    • 84927896522 scopus 로고
    • Dynamical systems with elastic reflections
    • [S1]
    • [S1] Sinai, Ya.: Dynamical systems with elastic reflections. Russ. Math. Surv. 25, 137-189 (1970)
    • (1970) Russ. Math. Surv. , vol.25 , pp. 137-189
    • Sinai, Ya.1
  • 20
    • 29644433764 scopus 로고    scopus 로고
    • Hard ball systems and semi-dispersive billiards: Hyperbolicity and ergodicity
    • [Si], D. Szász (ed.), Berlin: Springer
    • [Si] Simanyi, N.: Hard Ball Systems and Semi-Dispersive Billiards: Hyperbolicity and ergodicity. In: Hard Ball Systems and the Lorentz Cas, D. Szász (ed.), Berlin: Springer, 2000, pp. 51-88
    • (2000) Hard Ball Systems and the Lorentz Cas , pp. 51-88
    • Simanyi, N.1
  • 21
    • 21344475213 scopus 로고
    • The K-property of "orthogonal" cylindric billiards
    • [Sz]
    • [Sz] Szász, D.: The K-property of "orthogonal" cylindric billiards. Commun. Math. Phys. 160, 581-597 (1994)
    • (1994) Commun. Math. Phys. , vol.160 , pp. 581-597
    • Szász, D.1
  • 23
    • 0000176923 scopus 로고
    • Invariant families of cones and Lyapunov exponents
    • [W1]
    • [W1] Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Erg. Th. Dynam. Syst. 5, 145-161 (1985)
    • (1985) Erg. Th. Dynam. Syst. , vol.5 , pp. 145-161
    • Wojtkowski, M.1
  • 24
    • 0000928980 scopus 로고
    • Principles for the design of billiards with nonvanishing Lyapunov exponents
    • [W2]
    • [W2] Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commum. Math. Phys. 105, 391-414 (1986)
    • (1986) Commum. Math. Phys. , vol.105 , pp. 391-414
    • Wojtkowski, M.1
  • 25
    • 84974509231 scopus 로고
    • Measure theoretic entropy of the system of hard spheres
    • [W3]
    • [W3] Wojtkowski, M.: Measure theoretic entropy of the system of hard spheres. Erg. Th. Dynam. Syst. 8, 133-153 (1988)
    • (1988) Erg. Th. Dynam. Syst. , vol.8 , pp. 133-153
    • Wojtkowski, M.1
  • 26
    • 0001676415 scopus 로고
    • Linearly stable orbits in 3-dimensional billiards
    • [W4]
    • [W4] Wojtkowski, M.: Linearly stable orbits in 3-dimensional billiards. Commun. Math. Phys. 129(2), 319-327 (1990)
    • (1990) Commun. Math. Phys. , vol.129 , Issue.2 , pp. 319-327
    • Wojtkowski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.