메뉴 건너뛰기




Volumn 11, Issue 4, 2001, Pages 802-808

Mushrooms and other billiards with divided phase space

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035648602     PISSN: 10541500     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.1418763     Document Type: Article
Times cited : (135)

References (7)
  • 1
    • 0006452128 scopus 로고
    • Generic Hamiltonian dynamical systems are neither integrable nor ergodic
    • L. Markus and K. R. Meyer, "Generic Hamiltonian dynamical systems are neither integrable nor ergodic," Mem. Am. Math. Soc. 144, 1-52 (1978).
    • (1978) Mem. Am. Math. Soc. , vol.144 , pp. 1-52
    • Markus, L.1    Meyer, K.R.2
  • 2
    • 0032186754 scopus 로고    scopus 로고
    • How high-dimensional stadia look like
    • L. A. Bunimovich and J. Rehacek, "How high-dimensional stadia look like," Commun. Math. Phys. 197, 277-301 (1998).
    • (1998) Commun. Math. Phys. , vol.197 , pp. 277-301
    • Bunimovich, L.A.1    Rehacek, J.2
  • 3
    • 0000589687 scopus 로고    scopus 로고
    • On the ergodicity of high-dimensional focusing billiards
    • L. A. Bunimovich and J. Rehacek, "On the ergodicity of high-dimensional focusing billiards," Ann. Inst. Henri Poincaré 68, 421-448 (1999).
    • (1999) Ann. Inst. Henri Poincaré , vol.68 , pp. 421-448
    • Bunimovich, L.A.1    Rehacek, J.2
  • 4
    • 0000674670 scopus 로고
    • A theorem on ergodicity of two-dimensional hyperbolic billiards
    • L. A. Bunimovich, "A theorem on ergodicity of two-dimensional hyperbolic billiards," Commun. Math. Phys. 130, 599-621 (1990).
    • (1990) Commun. Math. Phys. , vol.130 , pp. 599-621
    • Bunimovich, L.A.1
  • 5
    • 0030541582 scopus 로고    scopus 로고
    • Non-uniformly hyperbolic K-systems are Bernoulli
    • N. I. Chernov and C. Haskell, "Non-uniformly hyperbolic K-systems are Bernoulli," Ergod. Theory Dyn. Syst. 16, 19-44 (1996).
    • (1996) Ergod. Theory Dyn. Syst. , vol.16 , pp. 19-44
    • Chernov, N.I.1    Haskell, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.