메뉴 건너뛰기




Volumn 25, Issue 10, 2004, Pages 1143-1154

A new efficient SVM-based edge detection method

Author keywords

Edge detection; Gaussian radial basis function kernel; Gradient and zero crossing operators; Least squares support vector machine

Indexed keywords

ALGORITHMS; IMAGING TECHNIQUES; LEAST SQUARES APPROXIMATIONS; RADIAL BASIS FUNCTION NETWORKS;

EID: 2942560335     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2004.03.009     Document Type: Article
Times cited : (59)

References (37)
  • 1
    • 0018466808 scopus 로고
    • Quantitative design and evaluation of enhancement thresholding edge detectors
    • Abdou I.E. Pratt W.K. Quantitative design and evaluation of enhancement thresholding edge detectors Proc. IEEE 69 1979 753-763
    • (1979) Proc. IEEE , vol.69 , pp. 753-763
    • Abdou, I.E.1    Pratt, W.K.2
  • 2
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman M.A. Braverman E.M. Rozono'er L.I. Theoretical foundations of the potential function method in pattern recognition learning Automat. Rem. Control 25 1964 821-837
    • (1964) Automat. Rem. Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozono'er, L.I.3
  • 3
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • D. Haussler (Ed.), : ACM Press, Pittsburgh, PA
    • Boser B.E. Guyon I.M. Vapnik V.N. A training algorithm for optimal margin classifiers Haussler D. 5th Annual ACM Workshop on COLT, Pittsburgh, PA 1992 144-152 ACM Press
    • (1992) 5th Annual ACM Workshop on COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition Knowl. Discovery Data Min. 2 2 1998 121-167
    • (1998) Knowl. Discovery Data Min. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 6
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C. Vapnik V. Support vector networks Mach. Learn. 20 1995 273-297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 0020330540 scopus 로고
    • Image segmentation using simple Markov field models
    • Hansen F.R. Elliot H. Image segmentation using simple Markov field models Comput. Graphics Image Process 20 1982 101-132
    • (1982) Comput. Graphics Image Process , vol.20 , pp. 101-132
    • Hansen, F.R.1    Elliot, H.2
  • 8
    • 0021155688 scopus 로고
    • Digital step edges from zero crossing second directional derivatives
    • PAMI-6
    • Haralick R.M. Digital step edges from zero crossing second directional derivatives IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6 1984 58-68
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , pp. 58-68
    • Haralick, R.M.1
  • 12
    • 0037971561 scopus 로고    scopus 로고
    • Robust edge detection
    • Hou Z.J. Koh T.S. Robust edge detection Pattern Recognit. 36 9 2003 2083-2091
    • (2003) Pattern Recognit. , vol.36 , Issue.9 , pp. 2083-2091
    • Hou, Z.J.1    Koh, T.S.2
  • 13
    • 0036643310 scopus 로고    scopus 로고
    • A new approach to edge detection
    • Hou Z.J. Wei G.W. A new approach to edge detection Pattern Recognit. 35 7 2002 1559-1570
    • (2002) Pattern Recognit. , vol.35 , Issue.7 , pp. 1559-1570
    • Hou, Z.J.1    Wei, G.W.2
  • 14
    • 0035294751 scopus 로고    scopus 로고
    • Efficient facet edge detection and quantitative performance evaluation
    • Qiang Ji Haralick Robert M. Efficient facet edge detection and quantitative performance evaluation Pattern Recognit. 35 3 2002 689-700
    • (2002) Pattern Recognit. , vol.35 , Issue.3 , pp. 689-700
    • Qiang Ji1    Haralick2    Robert, M.3
  • 16
    • 0037428196 scopus 로고    scopus 로고
    • A statistical approach to multi-scale edge detection
    • Konishi S. Yuille A.L. Coughlan J.M. A statistical approach to multi-scale edge detection Image Vision Comput. 21 1 2003 37-48
    • (2003) Image Vision Comput. , vol.21 , Issue.1 , pp. 37-48
    • Konishi, S.1    Yuille, A.L.2    Coughlan, J.M.3
  • 19
    • 0027269173 scopus 로고
    • A unified approach to boundary perception: Edges, textures and illusory contours
    • Manjunath B.S. Chellappa R. A unified approach to boundary perception: Edges, textures and illusory contours IEEE Trans. Neural Networks 4 1993 96-108
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 96-108
    • Manjunath, B.S.1    Chellappa, R.2
  • 21
    • 0029770969 scopus 로고    scopus 로고
    • Computational approach to zero-crossing-based two-dimensional edge detection
    • Mehrotra R. Zhan S. Computational approach to zero-crossing-based two-dimensional edge detection Graphical Models and Image Process. 58 1 1996 1-17
    • (1996) Graphical Models and Image Process. , vol.58 , Issue.1 , pp. 1-17
    • Mehrotra, R.1    Zhan, S.2
  • 22
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type and their connection with the theory of integral equations Philos. Trans. Roy. Soc. London, A 209 1909 415-446
    • (1909) Philos. Trans. Roy. Soc. London, A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 23
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • Micchelli C.A. Interpolation of scattered data: Distance matrices and conditionally positive definite functions Constr. Approx. 2 1986 11-22
    • (1986) Constr. Approx. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 25
    • 0000742278 scopus 로고
    • Bayesian recursive image estimation
    • Nahi N.E. Assefi T. Bayesian recursive image estimation IEEE Trans. Comput. 7 1972 734-738
    • (1972) IEEE Trans. Comput. , vol.7 , pp. 734-738
    • Nahi, N.E.1    Assefi, T.2
  • 27
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single layer feed forward neural network
    • Sanger T.D. Optimal unsupervised learning in a single layer feed forward neural network Neural Networks 2 1989 459-473
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 28
    • 0026254871 scopus 로고
    • On optimal infinite impulse response edge detection filters
    • PAMI-3
    • Sarkar S. Boyer K.L. On optimal infinite impulse response edge detection filters IEEE Trans. Pattern Anal. Mach. Intell. PAMI-3 1991 1154-1171
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , pp. 1154-1171
    • Sarkar, S.1    Boyer, K.L.2
  • 29
    • 0017997803 scopus 로고
    • Neighborhood coding of binary images for fast contour following and general array binary processing
    • Sobel I. Neighborhood coding of binary images for fast contour following and general array binary processing Comput. Graphics Image Process. 8 1978 127-135
    • (1978) Comput. Graphics Image Process. , vol.8 , pp. 127-135
    • Sobel, I.1
  • 30
    • 0023823131 scopus 로고
    • Edge detection in correlated noise using Latin squares models
    • Stern D. Kurz L. Edge detection in correlated noise using Latin squares models Pattern Recognit. 21 1988 119-129
    • (1988) Pattern Recognit. , vol.21 , pp. 119-129
    • Stern, D.1    Kurz, L.2
  • 31
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K. Vandewalle J. Least squares support vector machine classifiers Neural Process. Lett. 9 3 1999 293-300
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 33
    • 0035392694 scopus 로고    scopus 로고
    • Financial time series prediction using least squares support vector machines within the evidence framework
    • special issue on Neural Networks in Financial Engineering
    • Van Gestel, T., Suykens J., Baestaens D., Lambrechts A., Lanckriet G., Vandaele B., De Moor B., Vandewalle J., 2001. Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Transactions on Neural Networks, special issue on Neural Networks in Financial Engineering 12(4), 809-821
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 809-821
    • Van Gestel, T.1    Suykens, J.2    Baestaens, D.3    Lambrechts, A.4    Lanckriet, G.5    Vandaele, B.6    De Moor, B.7    Vandewalle, J.8
  • 36
    • 0002660750 scopus 로고    scopus 로고
    • The support vector method of function estimation
    • J. A. Suykens, & J. Vandewalle (Eds.), Boston: Kluwer Academic Publishers
    • Vapnik V. The support vector method of function estimation Suykens J.A.K. Vandewalle J. Nonlinear Modeling: Advanced Black-Box Techniques 1998 55-85 Kluwer Academic Publishers Boston
    • (1998) Nonlinear Modeling: Advanced Black-Box Techniques , pp. 55-85
    • Vapnik, V.1
  • 37
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. Jordan, & T. Petsche (Eds.), MIT Press: Cambridge, MA
    • Vapnik V. Golowich S. Smola A. Support vector method for function approximation, regression estimation, and signal processing Mozer M. Jordan M. Petsche T. The Advances in Neural Information Processing Systems 1997 281-287 Cambridge, MA MIT Press
    • (1997) The Advances in Neural Information Processing Systems , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.