-
1
-
-
0018466808
-
Quantitative design and evaluation of enhancement thresholding edge detectors
-
Abdou I.E. Pratt W.K. Quantitative design and evaluation of enhancement thresholding edge detectors Proc. IEEE 69 1979 753-763
-
(1979)
Proc. IEEE
, vol.69
, pp. 753-763
-
-
Abdou, I.E.1
Pratt, W.K.2
-
2
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman M.A. Braverman E.M. Rozono'er L.I. Theoretical foundations of the potential function method in pattern recognition learning Automat. Rem. Control 25 1964 821-837
-
(1964)
Automat. Rem. Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, E.M.2
Rozono'er, L.I.3
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler (Ed.), : ACM Press, Pittsburgh, PA
-
Boser B.E. Guyon I.M. Vapnik V.N. A training algorithm for optimal margin classifiers Haussler D. 5th Annual ACM Workshop on COLT, Pittsburgh, PA 1992 144-152 ACM Press
-
(1992)
5th Annual ACM Workshop on COLT
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
4
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition Knowl. Discovery Data Min. 2 2 1998 121-167
-
(1998)
Knowl. Discovery Data Min.
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
6
-
-
34249753618
-
Support vector networks
-
Cortes C. Vapnik V. Support vector networks Mach. Learn. 20 1995 273-297
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
0020330540
-
Image segmentation using simple Markov field models
-
Hansen F.R. Elliot H. Image segmentation using simple Markov field models Comput. Graphics Image Process 20 1982 101-132
-
(1982)
Comput. Graphics Image Process
, vol.20
, pp. 101-132
-
-
Hansen, F.R.1
Elliot, H.2
-
8
-
-
0021155688
-
Digital step edges from zero crossing second directional derivatives
-
PAMI-6
-
Haralick R.M. Digital step edges from zero crossing second directional derivatives IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6 1984 58-68
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, pp. 58-68
-
-
Haralick, R.M.1
-
12
-
-
0037971561
-
Robust edge detection
-
Hou Z.J. Koh T.S. Robust edge detection Pattern Recognit. 36 9 2003 2083-2091
-
(2003)
Pattern Recognit.
, vol.36
, Issue.9
, pp. 2083-2091
-
-
Hou, Z.J.1
Koh, T.S.2
-
13
-
-
0036643310
-
A new approach to edge detection
-
Hou Z.J. Wei G.W. A new approach to edge detection Pattern Recognit. 35 7 2002 1559-1570
-
(2002)
Pattern Recognit.
, vol.35
, Issue.7
, pp. 1559-1570
-
-
Hou, Z.J.1
Wei, G.W.2
-
14
-
-
0035294751
-
Efficient facet edge detection and quantitative performance evaluation
-
Qiang Ji Haralick Robert M. Efficient facet edge detection and quantitative performance evaluation Pattern Recognit. 35 3 2002 689-700
-
(2002)
Pattern Recognit.
, vol.35
, Issue.3
, pp. 689-700
-
-
Qiang Ji1
Haralick2
Robert, M.3
-
19
-
-
0027269173
-
A unified approach to boundary perception: Edges, textures and illusory contours
-
Manjunath B.S. Chellappa R. A unified approach to boundary perception: Edges, textures and illusory contours IEEE Trans. Neural Networks 4 1993 96-108
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 96-108
-
-
Manjunath, B.S.1
Chellappa, R.2
-
21
-
-
0029770969
-
Computational approach to zero-crossing-based two-dimensional edge detection
-
Mehrotra R. Zhan S. Computational approach to zero-crossing-based two-dimensional edge detection Graphical Models and Image Process. 58 1 1996 1-17
-
(1996)
Graphical Models and Image Process.
, vol.58
, Issue.1
, pp. 1-17
-
-
Mehrotra, R.1
Zhan, S.2
-
22
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
Mercer J. Functions of positive and negative type and their connection with the theory of integral equations Philos. Trans. Roy. Soc. London, A 209 1909 415-446
-
(1909)
Philos. Trans. Roy. Soc. London, A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
23
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definite functions
-
Micchelli C.A. Interpolation of scattered data: Distance matrices and conditionally positive definite functions Constr. Approx. 2 1986 11-22
-
(1986)
Constr. Approx.
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
25
-
-
0000742278
-
Bayesian recursive image estimation
-
Nahi N.E. Assefi T. Bayesian recursive image estimation IEEE Trans. Comput. 7 1972 734-738
-
(1972)
IEEE Trans. Comput.
, vol.7
, pp. 734-738
-
-
Nahi, N.E.1
Assefi, T.2
-
27
-
-
0024883243
-
Optimal unsupervised learning in a single layer feed forward neural network
-
Sanger T.D. Optimal unsupervised learning in a single layer feed forward neural network Neural Networks 2 1989 459-473
-
(1989)
Neural Networks
, vol.2
, pp. 459-473
-
-
Sanger, T.D.1
-
29
-
-
0017997803
-
Neighborhood coding of binary images for fast contour following and general array binary processing
-
Sobel I. Neighborhood coding of binary images for fast contour following and general array binary processing Comput. Graphics Image Process. 8 1978 127-135
-
(1978)
Comput. Graphics Image Process.
, vol.8
, pp. 127-135
-
-
Sobel, I.1
-
30
-
-
0023823131
-
Edge detection in correlated noise using Latin squares models
-
Stern D. Kurz L. Edge detection in correlated noise using Latin squares models Pattern Recognit. 21 1988 119-129
-
(1988)
Pattern Recognit.
, vol.21
, pp. 119-129
-
-
Stern, D.1
Kurz, L.2
-
31
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K. Vandewalle J. Least squares support vector machine classifiers Neural Process. Lett. 9 3 1999 293-300
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
33
-
-
0035392694
-
Financial time series prediction using least squares support vector machines within the evidence framework
-
special issue on Neural Networks in Financial Engineering
-
Van Gestel, T., Suykens J., Baestaens D., Lambrechts A., Lanckriet G., Vandaele B., De Moor B., Vandewalle J., 2001. Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Transactions on Neural Networks, special issue on Neural Networks in Financial Engineering 12(4), 809-821
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.4
, pp. 809-821
-
-
Van Gestel, T.1
Suykens, J.2
Baestaens, D.3
Lambrechts, A.4
Lanckriet, G.5
Vandaele, B.6
De Moor, B.7
Vandewalle, J.8
-
36
-
-
0002660750
-
The support vector method of function estimation
-
J. A. Suykens, & J. Vandewalle (Eds.), Boston: Kluwer Academic Publishers
-
Vapnik V. The support vector method of function estimation Suykens J.A.K. Vandewalle J. Nonlinear Modeling: Advanced Black-Box Techniques 1998 55-85 Kluwer Academic Publishers Boston
-
(1998)
Nonlinear Modeling: Advanced Black-Box Techniques
, pp. 55-85
-
-
Vapnik, V.1
-
37
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
M. Mozer, M. Jordan, & T. Petsche (Eds.), MIT Press: Cambridge, MA
-
Vapnik V. Golowich S. Smola A. Support vector method for function approximation, regression estimation, and signal processing Mozer M. Jordan M. Petsche T. The Advances in Neural Information Processing Systems 1997 281-287 Cambridge, MA MIT Press
-
(1997)
The Advances in Neural Information Processing Systems
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
|