메뉴 건너뛰기




Volumn 53, Issue 1, 2002, Pages 20-34

Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems

Author keywords

Asymptotic stability; Traveling waves; Viscous conservation laws

Indexed keywords


EID: 0036003028     PISSN: 00442275     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00033-002-8139-6     Document Type: Article
Times cited : (44)

References (33)
  • 2
    • 84980087271 scopus 로고
    • Symmetric hyperbolic linear differential equations
    • Fr
    • [Fr] K.O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392.
    • (1954) Comm. Pure Appl. Math. , vol.7 , pp. 345-392
    • Friedrichs, K.O.1
  • 3
    • 0034384332 scopus 로고    scopus 로고
    • Stability of viscous shock waves associated with non-convex modes
    • Fri.1
    • [Fri.1] C. Fries, Stability of viscous shock waves associated with non-convex modes, Arch. Ration. Mech. Anal. 152 (2000), 141-186.
    • (2000) Arch. Ration. Mech. Anal. , vol.152 , pp. 141-186
    • Fries, C.1
  • 4
    • 0000697564 scopus 로고    scopus 로고
    • Nonlinear asymptotic stability of general small-amplitude viscous Laxian shock waves
    • Fri.2
    • [Fri.2] C. Fries, Nonlinear asymptotic stability of general small-amplitude viscous Laxian shock waves, J. Differential Equations 146 (1998), 185-202.
    • (1998) J. Differential Equations , vol.146 , pp. 185-202
    • Fries, C.1
  • 5
    • 0040942605 scopus 로고    scopus 로고
    • The Gap Lemma and geometric criteria for instability of viscous shock profiles
    • GZ
    • [GZ] R. Gardner and K. Zumbrun, The Gap Lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math. 51 (1998), 797-855.
    • (1998) Comm. Pure Appl. Math. , vol.51 , pp. 797-855
    • Gardner, R.1    Zumbrun, K.2
  • 6
    • 0000716762 scopus 로고
    • The existence and limit behavior of the one-dimensional shock layer
    • Gi
    • [Gi] D. Gilbarg, The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math. 73 (1951), 256-274.
    • (1951) Amer. J. Math. , vol.73 , pp. 256-274
    • Gilbarg, D.1
  • 7
    • 0022865466 scopus 로고
    • Nonlinear asymptotic stability of viscous shock profiles for conservation laws
    • Go.1
    • [Go.1] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Anal. 95 (1986), 325-344.
    • (1986) Arch. Rational Mech. Anal. , vol.95 , pp. 325-344
    • Goodman, J.1
  • 8
    • 0001054919 scopus 로고
    • Remarks on the stability of viscous shock waves
    • [Go.2] (Raleigh, NC), SIAM, Philadelphia, PA
    • [Go.2] J. Goodman, Remarks on the stability of viscous shock waves, in: Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), 66-72, SIAM, Philadelphia, PA, (1991).
    • (1990) Viscous profiles and numerical methods for shock waves , pp. 66-72
    • Goodman, J.1
  • 9
    • 0003460899 scopus 로고
    • Geometric theory of semilinear parabolic equations
    • [He] Springer-Verlag, Berlin, iv + 348 pp
    • [He] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin (1981), iv + 348 pp.
    • (1981) Lecture Notes in Mathematics
    • Henry, D.1
  • 10
    • 44049122094 scopus 로고
    • Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data
    • Ho
    • [Ho] D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data, J. of Differential Equations 95 (1992), 33-73.
    • (1992) J. of Differential Equations , vol.95 , pp. 33-73
    • Hoff, D.1
  • 11
    • 0000591519 scopus 로고
    • Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow
    • HoZ.1
    • [HoZ.1] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J. 44 (1995), 603-676.
    • (1995) Indiana Univ. Math. J. , vol.44 , pp. 603-676
    • Hoff, D.1    Zumbrun, K.2
  • 12
    • 0031513195 scopus 로고    scopus 로고
    • Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves
    • HoZ.2
    • [HoZ.2] D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys. 48 (1997), 597-614.
    • (1997) Z. Angew. Math. Phys. , vol.48 , pp. 597-614
    • Hoff, D.1    Zumbrun, K.2
  • 13
    • 0000416467 scopus 로고
    • On a model system of equations of of one-dimensional gas motion
    • K
    • [K] Ya. Kanel, On a model system of equations of of one-dimensional gas motion, Diff. Eqns. 4 (1968), 374-380.
    • (1968) Diff. Eqns. , vol.4 , pp. 374-380
    • Kanel, Ya.1
  • 15
    • 84976041027 scopus 로고
    • Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications
    • Ka.2
    • [Ka.2] S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Royal Soc. Edinburgh 106A, (1987), 169-194.
    • (1987) Proc. Royal Soc. Edinburgh , vol.106 A , pp. 169-194
    • Kawashima, S.1
  • 16
    • 34250115323 scopus 로고
    • Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion
    • KM
    • [KM] S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys. 101 (1985), 97-127.
    • (1985) Comm. Math. Phys. , vol.101 , pp. 97-127
    • Kawashima, S.1    Matsumura, A.2
  • 17
    • 0011608808 scopus 로고
    • Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas
    • KMN
    • [KMN] S. Kawashima, A. Matsumura, and K. Nishihara, Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 249-252.
    • (1986) Proc. Japan Acad. Ser. A Math. Sci. , vol.62 , pp. 249-252
    • Kawashima, S.1    Matsumura, A.2    Nishihara, K.3
  • 18
    • 84972554928 scopus 로고
    • On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws
    • KSy
    • [KSy] S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. 40 (1988), 449-464.
    • (1988) Tohoku Math. J. , vol.40 , pp. 449-464
    • Kawashima, S.1    Shizuta, Y.2
  • 19
    • 0003261490 scopus 로고
    • Hyperbolic systems of conservation laws and the mathematical theory of shock waves
    • [La] Society for Industrial and Applied Mathematics, Philadelphia, Pa., v+48 pp
    • [La] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. v+48 pp.
    • (1973) Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics , vol.11
    • Lax, P.D.1
  • 20
    • 0030642440 scopus 로고    scopus 로고
    • Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws
    • LZe
    • [LZe] T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, AMS memoirs 599 (1997).
    • (1997) AMS memoirs , vol.599
    • Liu, T.-P.1    Zeng, Y.2
  • 22
    • 0000489095 scopus 로고
    • Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids
    • MNi
    • [MNi] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids, Comm. Math. Phys. 89 (1983), 445-464.
    • (1983) Comm. Math. Phys. , vol.89 , pp. 445-464
    • Matsumura, A.1    Nishida, T.2
  • 23
    • 0001923997 scopus 로고
    • On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas
    • MN
    • [MN] A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math. 2 (1985), 17-25.
    • (1985) Japan J. Appl. Math. , vol.2 , pp. 17-25
    • Matsumura, A.1    Nishihara, K.2
  • 24
    • 0002124586 scopus 로고
    • Stable viscosity matrices for systems of conservation laws
    • MP
    • [MP] A. Majda and R. Pego, Stable viscosity matrices for systems of conservation laws, J. Diff. Eqs. 56 (1985), 229-262.
    • (1985) J. Diff. Eqs. , vol.56 , pp. 229-262
    • Majda, A.1    Pego, R.2
  • 25
    • 84972513592 scopus 로고
    • Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation
    • SK
    • [SK] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14 (1984), 435-457.
    • (1984) Hokkaido Math. J. , vol.14 , pp. 435-457
    • Shizuta, Y.1    Kawashima, S.2
  • 26
    • 0000814275 scopus 로고
    • On the stability of waves of nonlinear parabolic systems
    • Sat
    • [Sat] D. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math. 22 (1976), 312-355.
    • (1976) Adv. Math. , vol.22 , pp. 312-355
    • Sattinger, D.1
  • 28
    • 84980080185 scopus 로고
    • Shock waves in arbitrary fluids
    • We
    • [We] H. Weyl, Shock waves in arbitrary fluids, Comm. Pure Appl. Math. 2 (1949), 103-122.
    • (1949) Comm. Pure Appl. Math. , vol.2 , pp. 103-122
    • Weyl, H.1
  • 29
    • 84990671435 scopus 로고
    • 1 asymptotic behavior of compressible, isentropic, viscous 1-d flow
    • Ze
    • 1 asymptotic behavior of compressible, isentropic, viscous 1-d flow, Comm. Pure Appl. Math. 47 (1994), 1053-1092.
    • (1994) Comm. Pure Appl. Math. , vol.47 , pp. 1053-1092
    • Zeng, Y.1
  • 30
    • 0009378734 scopus 로고    scopus 로고
    • Pointwise semigroup methods and stability of viscous shock waves
    • ZH
    • [ZH] K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Mathematics Journal V47 (1998), 741-871.
    • (1998) Indiana Mathematics Journal , vol.V47 , pp. 741-871
    • Zumbrun, K.1    Howard, P.2
  • 31
    • 0347993642 scopus 로고    scopus 로고
    • Multidimensional stability of planar viscous shock waves
    • [Z.1] Köchel am See, Preprint
    • [Z.1] K. Zumbrun, Multidimensional stability of planar viscous shock waves, TMR lecture notes, Köchel am See, Preprint (2000).
    • (2000) TMR lecture notes
    • Zumbrun, K.1
  • 33
    • 0001028485 scopus 로고    scopus 로고
    • Viscous and inviscid stability of multidimensional planar shock fronts
    • ZS
    • [ZS] K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48 (1999), 937-992.
    • (1999) Indiana Univ. Math. J. , vol.48 , pp. 937-992
    • Zumbrun, K.1    Serre, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.