메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 801-806

Using modified lasso regression to learn large undirected graphs in a probabilistic framework

Author keywords

Bayesian networks; Data mining; Machine learning

Indexed keywords

BAYESIAN NETWORKS; GRAPH STRUCTURE; GRAPHICAL GAUSSIAN MODEL (GGM);

EID: 29344460888     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (19)
  • 2
    • 10744226222 scopus 로고    scopus 로고
    • Computational discovery of gene module and regulatory networks
    • Bar-Joseph, Z.; Gerber, G.; Lee, T.; and Rinaldi, N. 2003. Computational discovery of gene module and regulatory networks. Nature Biotechnology 21(11):1337-42.
    • (2003) Nature Biotechnology , vol.21 , Issue.11 , pp. 1337-1342
    • Bar-Joseph, Z.1    Gerber, G.2    Lee, T.3    Rinaldi, N.4
  • 3
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Bernard, A., and Hartemink, A. 2005. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In Pacific Symposium on Biocomputing.
    • (2005) Pacific Symposium on Biocomputing
    • Bernard, A.1    Hartemink, A.2
  • 5
    • 0035686479 scopus 로고    scopus 로고
    • Bayesian learning of sparse classifi ers
    • Figueiredo, M., and Jain, A. 2001. Bayesian learning of sparse classifi ers. In CVPR, 35-41.
    • (2001) CVPR , pp. 35-41
    • Figueiredo, M.1    Jain, A.2
  • 7
    • 0036431552 scopus 로고    scopus 로고
    • Parameter priors for directed acyclic graphical models and the characterization of several probability distributions
    • Geiger, D., and D.Heckerman. 2002. Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. Annals of Statistics 5:1412-1440.
    • (2002) Annals of Statistics , vol.5 , pp. 1412-1440
    • Geiger, D.1    Heckerman, D.2
  • 9
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink, A.; Gifford, D.; Jaakkola, T.; and Young, R. 2001. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In Pacific Symposium on Biocomputing.
    • (2001) Pacific Symposium on Biocomputing
    • Hartemink, A.1    Gifford, D.2    Jaakkola, T.3    Young, R.4
  • 11
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in saccharomyces cerevisiae
    • Lee, T.; Rinaldi, N.; Robert, F.; and Odom, D. 2002. Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298:799-804.
    • (2002) Science , vol.298 , pp. 799-804
    • Lee, T.1    Rinaldi, N.2    Robert, F.3    Odom, D.4
  • 12
    • 29344450399 scopus 로고    scopus 로고
    • Consistent neighbourhood selection for sparse high-dimensional graphs with lasso
    • ETH 123, Institute for the Study of Learning and Expertise
    • Meinshausen, N., and Buhlmann, P. 2004. Consistent neighbourhood selection for sparse high-dimensional graphs with lasso. Technical Report Seminar for statistic, ETH 123, Institute for the Study of Learning and Expertise.
    • (2004) Technical Report Seminar for Statistic
    • Meinshausen, N.1    Buhlmann, P.2
  • 13
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, 11 vs 12 regularization, and rotational invariance
    • Ng, A. 2003. Feature selection, 11 vs 12 regularization, and rotational invariance. In ICML.
    • (2003) ICML
    • Ng, A.1
  • 14
    • 25644453422 scopus 로고    scopus 로고
    • An empirical bayes approach to inferring large-scale gene association networks
    • Schafer, J., and Strimmer, K. 2004. An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics in press.
    • (2004) Bioinformatics in Press
    • Schafer, J.1    Strimmer, K.2
  • 15
    • 2442446708 scopus 로고    scopus 로고
    • Genome-wide discovery of transcriptional modules from dna sequence and gene expression
    • Segal, E.; Yelensky, R.; and Koller, D. 2003. Genome-wide discovery of transcriptional modules from dna sequence and gene expression. Bioinformatics 19:273-82.
    • (2003) Bioinformatics , vol.19 , pp. 273-282
    • Segal, E.1    Yelensky, R.2    Koller, D.3
  • 16
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast,incremental feature selection by gradient descent in function space
    • Simon, P.; Kevin, L.; and James, T. 2003. Grafting: Fast,incremental feature selection by gradient descent in function space. JMLR 1333-1356.
    • (2003) JMLR , pp. 1333-1356
    • Simon, P.1    Kevin, L.2    James, T.3
  • 17
    • 0031742022 scopus 로고    scopus 로고
    • Compehensive identifi cation of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. molecular
    • Spellman, P.; Sherlock, G.; Zhang, M.; and Iyer, V. 1998. Compehensive identifi cation of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. molecular. Biology of the Cell 9:3273-3297.
    • (1998) Biology of the Cell , vol.9 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.3    Iyer, V.4
  • 18
    • 85194972808 scopus 로고    scopus 로고
    • Optimal reinsertion:regression shrink-age and selection via the lasso
    • Tibshirani, R. 1996. Optimal reinsertion:regression shrink-age and selection via the lasso. J.R.Statist Soc. B(1996), 58,No.1:267-288.
    • (1996) J.R.Statist Soc. B(1996) , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 19
    • 22044448669 scopus 로고    scopus 로고
    • Sparse graphical gaussian modeling of the iso-prenoid gene network in arabidopsis thaliana
    • Wille, A.; Zimmermann, P.; Vranov, E.; and Frholz, A. 2004. Sparse graphical gaussian modeling of the iso-prenoid gene network in arabidopsis thaliana. Genome Biology 5:92.
    • (2004) Genome Biology , vol.5 , pp. 92
    • Wille, A.1    Zimmermann, P.2    Vranov, E.3    Frholz, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.