-
1
-
-
0034069495
-
Gene ontology: Tool for the unifi cation of biology
-
Ashburner, M.; Ball, C.; Blake, J.; Botstein, D.; and Butler, H. 2000. Gene ontology: tool for the unifi cation of biology. Nature Genetics 25:25-29.
-
(2000)
Nature Genetics
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.2
Blake, J.3
Botstein, D.4
Butler, H.5
-
2
-
-
10744226222
-
Computational discovery of gene module and regulatory networks
-
Bar-Joseph, Z.; Gerber, G.; Lee, T.; and Rinaldi, N. 2003. Computational discovery of gene module and regulatory networks. Nature Biotechnology 21(11):1337-42.
-
(2003)
Nature Biotechnology
, vol.21
, Issue.11
, pp. 1337-1342
-
-
Bar-Joseph, Z.1
Gerber, G.2
Lee, T.3
Rinaldi, N.4
-
3
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
Bernard, A., and Hartemink, A. 2005. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In Pacific Symposium on Biocomputing.
-
(2005)
Pacific Symposium on Biocomputing
-
-
Bernard, A.1
Hartemink, A.2
-
4
-
-
15944399178
-
Sparse graphical models for exploring gene expression data
-
Dobra, A.; Hans, C.; Jones, B.; Nevins, J.; Yao, G.; and West, M. 2004. Sparse graphical models for exploring gene expression data. J. Mult. Analysis 90:196-212.
-
(2004)
J. Mult. Analysis
, vol.90
, pp. 196-212
-
-
Dobra, A.1
Hans, C.2
Jones, B.3
Nevins, J.4
Yao, G.5
West, M.6
-
5
-
-
0035686479
-
Bayesian learning of sparse classifi ers
-
Figueiredo, M., and Jain, A. 2001. Bayesian learning of sparse classifi ers. In CVPR, 35-41.
-
(2001)
CVPR
, pp. 35-41
-
-
Figueiredo, M.1
Jain, A.2
-
6
-
-
29344471229
-
Using bayesian network to analyze expression data
-
Friedman, N.; Linial, M.; Nachman, I.; and Pe'er, D. 1996. Using bayesian network to analyze expression data. Jounnal of Computational Biology 7(2002):175-186.
-
(1996)
Jounnal of Computational Biology
, vol.7
, Issue.2002
, pp. 175-186
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
7
-
-
0036431552
-
Parameter priors for directed acyclic graphical models and the characterization of several probability distributions
-
Geiger, D., and D.Heckerman. 2002. Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. Annals of Statistics 5:1412-1440.
-
(2002)
Annals of Statistics
, vol.5
, pp. 1412-1440
-
-
Geiger, D.1
Heckerman, D.2
-
9
-
-
0035221560
-
Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
-
Hartemink, A.; Gifford, D.; Jaakkola, T.; and Young, R. 2001. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In Pacific Symposium on Biocomputing.
-
(2001)
Pacific Symposium on Biocomputing
-
-
Hartemink, A.1
Gifford, D.2
Jaakkola, T.3
Young, R.4
-
11
-
-
0037174671
-
Transcriptional regulatory networks in saccharomyces cerevisiae
-
Lee, T.; Rinaldi, N.; Robert, F.; and Odom, D. 2002. Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298:799-804.
-
(2002)
Science
, vol.298
, pp. 799-804
-
-
Lee, T.1
Rinaldi, N.2
Robert, F.3
Odom, D.4
-
12
-
-
29344450399
-
Consistent neighbourhood selection for sparse high-dimensional graphs with lasso
-
ETH 123, Institute for the Study of Learning and Expertise
-
Meinshausen, N., and Buhlmann, P. 2004. Consistent neighbourhood selection for sparse high-dimensional graphs with lasso. Technical Report Seminar for statistic, ETH 123, Institute for the Study of Learning and Expertise.
-
(2004)
Technical Report Seminar for Statistic
-
-
Meinshausen, N.1
Buhlmann, P.2
-
13
-
-
14344249889
-
Feature selection, 11 vs 12 regularization, and rotational invariance
-
Ng, A. 2003. Feature selection, 11 vs 12 regularization, and rotational invariance. In ICML.
-
(2003)
ICML
-
-
Ng, A.1
-
14
-
-
25644453422
-
An empirical bayes approach to inferring large-scale gene association networks
-
Schafer, J., and Strimmer, K. 2004. An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics in press.
-
(2004)
Bioinformatics in Press
-
-
Schafer, J.1
Strimmer, K.2
-
15
-
-
2442446708
-
Genome-wide discovery of transcriptional modules from dna sequence and gene expression
-
Segal, E.; Yelensky, R.; and Koller, D. 2003. Genome-wide discovery of transcriptional modules from dna sequence and gene expression. Bioinformatics 19:273-82.
-
(2003)
Bioinformatics
, vol.19
, pp. 273-282
-
-
Segal, E.1
Yelensky, R.2
Koller, D.3
-
16
-
-
1942418470
-
Grafting: Fast,incremental feature selection by gradient descent in function space
-
Simon, P.; Kevin, L.; and James, T. 2003. Grafting: Fast,incremental feature selection by gradient descent in function space. JMLR 1333-1356.
-
(2003)
JMLR
, pp. 1333-1356
-
-
Simon, P.1
Kevin, L.2
James, T.3
-
17
-
-
0031742022
-
Compehensive identifi cation of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. molecular
-
Spellman, P.; Sherlock, G.; Zhang, M.; and Iyer, V. 1998. Compehensive identifi cation of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. molecular. Biology of the Cell 9:3273-3297.
-
(1998)
Biology of the Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.1
Sherlock, G.2
Zhang, M.3
Iyer, V.4
-
18
-
-
85194972808
-
Optimal reinsertion:regression shrink-age and selection via the lasso
-
Tibshirani, R. 1996. Optimal reinsertion:regression shrink-age and selection via the lasso. J.R.Statist Soc. B(1996), 58,No.1:267-288.
-
(1996)
J.R.Statist Soc. B(1996)
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
19
-
-
22044448669
-
Sparse graphical gaussian modeling of the iso-prenoid gene network in arabidopsis thaliana
-
Wille, A.; Zimmermann, P.; Vranov, E.; and Frholz, A. 2004. Sparse graphical gaussian modeling of the iso-prenoid gene network in arabidopsis thaliana. Genome Biology 5:92.
-
(2004)
Genome Biology
, vol.5
, pp. 92
-
-
Wille, A.1
Zimmermann, P.2
Vranov, E.3
Frholz, A.4
|