-
1
-
-
0001625953
-
Embedding of Urn schemes into continuous time Markov branching processes and related limit theorems
-
ATHREYA, K. B. and KARLIN, S. (1986). Embedding of Urn schemes into continuous time Markov branching processes and related limit theorems. Ann. Math. Statist. 39 1801-1817.
-
(1986)
Ann. Math. Statist.
, vol.39
, pp. 1801-1817
-
-
Athreya, K.B.1
Karlin, S.2
-
3
-
-
0002189550
-
Recent progress on de Finetti's notion of exchangeability
-
J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds. Oxford Univ. Press
-
DIACONIS, P. (1988). Recent progress on de Finetti's notion of exchangeability. In Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 43-110. Oxford Univ. Press.
-
(1988)
Bayesian Statistics
, vol.3
, pp. 43-110
-
-
Diaconis, P.1
-
6
-
-
0000559084
-
Strong law for some generalized urn processes
-
HILL, B. M., LANE, D. and SUDDERTH, W. A. (1980). Strong law for some generalized urn processes. Ann. Probab. 8 214-226.
-
(1980)
Ann. Probab.
, vol.8
, pp. 214-226
-
-
Hill, B.M.1
Lane, D.2
Sudderth, W.A.3
-
7
-
-
0011682450
-
Edge-reinforced random walk on finite graphs
-
P. Clement, F. den Hollander, J. van Neerven and B. de Pagter, eds. Royal Netherlands Academy of Arts and Sciences, Amsterdam
-
KEANE, M. S. and ROLLES, S. W. W. (2000). Edge-reinforced random walk on finite graphs. In Infinite Dimensional Stochastic Analysis (P. Clement, F. den Hollander, J. van Neerven and B. de Pagter, eds.) 217-234. Royal Netherlands Academy of Arts and Sciences, Amsterdam.
-
(2000)
Infinite Dimensional Stochastic Analysis
, pp. 217-234
-
-
Keane, M.S.1
Rolles, S.W.W.2
-
8
-
-
0000925076
-
Phase transition in reinforced random walk and RWRE on trees
-
PEMANTLE, R. (1988). Phase transition in reinforced random walk and RWRE on trees. Ann. Probab. 16 1229-1241.
-
(1988)
Ann. Probab.
, vol.16
, pp. 1229-1241
-
-
Pemantle, R.1
-
11
-
-
0033164053
-
Vertex-reinforced random walk on Z has finite range
-
PEMANTLE, R. and VOLKOV, S. (1999). Vertex-reinforced random walk on Z has finite range. Ann. Probab. 27 1368-1388.
-
(1999)
Ann. Probab.
, vol.27
, pp. 1368-1388
-
-
Pemantle, R.1
Volkov, S.2
-
14
-
-
0038270813
-
Limit theorems for weakly reinforced random walks on Z
-
TÓTH, B. (1997). Limit theorems for weakly reinforced random walks on Z. Studia Sci. Math. Hungar. 33 321-337.
-
(1997)
Studia Sci. Math. Hungar.
, vol.33
, pp. 321-337
-
-
Tóth, B.1
-
15
-
-
0035533093
-
Vertex-reinforced random walk on arbitrary graphs
-
VOLKOV, S. (2001). Vertex-reinforced random walk on arbitrary graphs. Ann. Probab. 29 66-91.
-
(2001)
Ann. Probab.
, vol.29
, pp. 66-91
-
-
Volkov, S.1
|