-
2
-
-
84902415597
-
-
(b) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H. J Am Chem Soc 1992, 114, 39;
-
(1992)
J Am Chem Soc
, vol.114
, pp. 39
-
-
Nguyen, S.T.1
Johnson, L.K.2
Grubbs, R.H.3
-
5
-
-
0034706887
-
-
(b) Morbelli, L.; Eder, E.; Preishuber-Pflügl, P.; Stelzer F. J Mol Catal A 2000, 160, 45.
-
(2000)
J Mol Catal A
, vol.160
, pp. 45
-
-
Morbelli, L.1
Eder, E.2
Preishuber-Pflügl, P.3
Stelzer, F.4
-
7
-
-
29144496492
-
-
(b) Watkins, N.; Quigley, P.; Orton, M. Macromol Chem Phys 1994, 195, 114;
-
(1994)
Macromol Chem Phys
, vol.195
, pp. 114
-
-
Watkins, N.1
Quigley, P.2
Orton, M.3
-
9
-
-
0003587260
-
-
Sadhir, R. K.; Luck, R. M., Eds.; CRC: Boca Raton, FL
-
For the past several decades, several volume-expanding monomers, including spiro orthocarbonates, cyclic carbonates, and bicyclic bis(γ-lactone)s, have been developed, and these monomers show volume expansion of several percent or no volume shrinkage during the ring-opening polymerization; see (a) Luck, R. M.; Sadhir, R. S. In Expanding Monomers: Synthesis, Characterization, and Applications; Sadhir, R. K.; Luck, R. M., Eds.; CRC: Boca Raton, FL, 1992;
-
(1992)
Expanding Monomers: Synthesis, Characterization, and Applications
-
-
Luck, R.M.1
Sadhir, R.S.2
-
10
-
-
0006376518
-
-
Salamone, J. C., Ed.; CRC: Boca Raton, FL
-
(b) Endo, T.; Sanda, F. In Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC: Boca Raton, FL, 1996; p 7554;
-
(1996)
Polymeric Materials Encyclopedia
, pp. 7554
-
-
Endo, T.1
Sanda, F.2
-
11
-
-
0026632054
-
-
Chikaoka, S.; Takata, T.; Endo, T. Macromolecules 1992, 25, 625;
-
(1992)
Macromolecules
, vol.25
, pp. 625
-
-
Chikaoka, S.1
Takata, T.2
Endo, T.3
-
12
-
-
0027696506
-
-
Takata, T.; Chung, K.; Tadokoro, A.; Endo, T. Macromolecules 1993, 26, 6686;
-
(1993)
Macromolecules
, vol.26
, pp. 6686
-
-
Takata, T.1
Chung, K.2
Tadokoro, A.3
Endo, T.4
-
13
-
-
0029288435
-
-
(e) Chung, K.; Takata, T.; Endo, T. Macromolecules 1995, 28, 3048;
-
(1995)
Macromolecules
, vol.28
, pp. 3048
-
-
Chung, K.1
Takata, T.2
Endo, T.3
-
14
-
-
0035912983
-
-
(f) Fukuchi, I.; Sanda, F.; Endo, T. Macromolecules 2001, 34, 4296;
-
(2001)
Macromolecules
, vol.34
, pp. 4296
-
-
Fukuchi, I.1
Sanda, F.2
Endo, T.3
-
15
-
-
0642305145
-
-
(g) Takata, T.; Sanda, F.; Ariga, T.; Nemoto, H.; Endo, T. Macromol Rapid Commun 1997, 18, 461;
-
(1997)
Macromol Rapid Commun
, vol.18
, pp. 461
-
-
Takata, T.1
Sanda, F.2
Ariga, T.3
Nemoto, H.4
Endo, T.5
-
16
-
-
0037118850
-
-
(h) Kameshima, H.; Nemoto, N.; Sanda, F.; Endo, T. Macromolecules 2002, 35, 5769;
-
(2002)
Macromolecules
, vol.35
, pp. 5769
-
-
Kameshima, H.1
Nemoto, N.2
Sanda, F.3
Endo, T.4
-
18
-
-
6944242689
-
-
(j) Hino, T.; Inoue, N.; Endo, T. J Polym Sci Part A: Polym Chem 2004, 42, 5113;
-
(2004)
J Polym Sci Part A: Polym Chem
, vol.42
, pp. 5113
-
-
Hino, T.1
Inoue, N.2
Endo, T.3
-
20
-
-
29144449678
-
-
note
-
Most polymerizations, including ROMP, generally are carried out with volume shrinkage, which usually causes serious problems in materials science, such as lowering of adhesion, voids, microcracks, and remaining stresses. This shrinkage is mainly considered to be derived from the proximity of monomer molecules caused by the polymerization. For example, vinyl and cyclic monomers generally undergo polymerization with extensive volume shrinkage (ca. 10-20%); see ref. 4(a) and references cited therein.
-
-
-
-
21
-
-
11444254331
-
-
(a) Hino, T.; Inoue, N.; Endo, T. Macromolecules 2004, 37, 9660;
-
(2004)
Macromolecules
, vol.37
, pp. 9660
-
-
Hino, T.1
Inoue, N.2
Endo, T.3
-
22
-
-
29144500202
-
-
in press.note
-
(b) Hino, T.; Inoue, N.; Endo, T. J Polym Sci Part A: Polym Chem, in press. Such volume-expanding behavior has not been reported before a polymerization versus after a polymeriza tion, except for the ring-opening polymerizations of cyclic carbonate moieties [see ref. 4(g)]. In addition, the specific volume expansion can be roughly explained as follows: Before the ROMP, monomers 2 and 3 should exist rather close to each other because of the relatively large dipole - dipole interaction based on the cyclic carbonate structure. However, this state should be disturbed along with the propagation of ROMP on the norbornene unit, mainly because of steric factors, including steric hindrance in the molecular/polymer structures. Thus, the ROMP of norbornene-containing five- or six-membered-ring cyclic carbonates (2 and 3, respectively) should specifically overcome the volume shrinkage derived from the formation of new bonds between monomers. Incidentally, cyclic carbonates have relatively large dipole moments. For example, the dipole moment of 2-oxo-1,3-dioxane (six-membered-ring cyclic carbonate) has been calculated to be 5.38 D.
-
J Polym Sci Part A: Polym Chem
-
-
Hino, T.1
Inoue, N.2
Endo, T.3
-
23
-
-
29144435553
-
-
note
-
The ROMP of norbornene itself proceeds along with approximately 2% volume shrinkage before the treatment versus after the treatment.
-
-
-
-
25
-
-
0031162647
-
-
The norbornenes bearing cyclic carbonate units (2 and 3) were prepared according to the reported procedures. For 2, see (a) Chen, X.; McCarthy, S. P.; Gross, R. A. Macromolecules 1997, 30, 3470. For 3,
-
(1997)
Macromolecules
, vol.30
, pp. 3470
-
-
Chen, X.1
McCarthy, S.P.2
Gross, R.A.3
-
26
-
-
33947474674
-
-
See also our previous article (ref. 6)
-
see (b) Newman, M. S.; Addor, R. W. J Am Chem Soc 1955, 77, 3789. See also our previous article (ref. 6).
-
(1955)
J Am Chem Soc
, vol.77
, pp. 3789
-
-
Newman, M.S.1
Addor, R.W.2
|