-
1
-
-
0003587260
-
-
Sadhir, R. K.; Luck, R. M., Eds.; CRC Press: Boca Raton, FL
-
(a) Luck, R. K.; Sadhir, R. S. In Expanding Monomers: Synthesis, Characterization, and Applications; Sadhir, R. K.; Luck, R. M., Eds.; CRC Press: Boca Raton, FL 1992; pp 63-152. 1
-
(1992)
Expanding Monomers: Synthesis, Characterization, and Applications
, vol.1
, pp. 63-152
-
-
Luck, R.K.1
Sadhir, R.S.2
-
2
-
-
0006376518
-
-
Salamone, J. C., Ed.; CRC Press: Boca Raton, FL
-
(b) Endo, T.; Sanda, F.In Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC Press: Boca Raton, FL 1996; p 7554.
-
(1996)
Polymeric Materials Encyclopedia
, pp. 7554
-
-
Endo, T.1
Sanda, F.2
-
8
-
-
0026632054
-
-
(f) Chikaoka, S.; Takata, T.; Endo, T. Macromolecules 1992, 25, 625.
-
(1992)
Macromolecules
, vol.25
, pp. 625
-
-
Chikaoka, S.1
Takata, T.2
Endo, T.3
-
9
-
-
0037118850
-
-
(g) Kameshima, H.; Nemoto, N.; Sanda, F.; Endo, T. Macromolecules 2002, 35, 5769.
-
(2002)
Macromolecules
, vol.35
, pp. 5769
-
-
Kameshima, H.1
Nemoto, N.2
Sanda, F.3
Endo, T.4
-
10
-
-
0027696506
-
-
(h) Takata, T.; Chung, K.; Tadokoro, A.; Endo, T. Macromolecules 1993, 26, 6686.
-
(1993)
Macromolecules
, vol.26
, pp. 6686
-
-
Takata, T.1
Chung, K.2
Tadokoro, A.3
Endo, T.4
-
11
-
-
0029288435
-
-
(i) Chung, K.; Takata, T; Endo, T. Macromolecules 1995, 28, 3048.
-
(1995)
Macromolecules
, vol.28
, pp. 3048
-
-
Chung, K.1
Takata, T.2
Endo, T.3
-
12
-
-
0035912983
-
-
(j) Fukuchi, I.; Sanda, F.; Endo, T. Macromolecules, 2001, 34, 4296.
-
(2001)
Macromolecules
, vol.34
, pp. 4296
-
-
Fukuchi, I.1
Sanda, F.2
Endo, T.3
-
14
-
-
6944242689
-
-
(l) Hino, T.; Inoue, N.; Endo, T. J Polym Sci Part A: Polym Chem 2004, 42, 5113.
-
(2004)
J Polym Sci Part A: Polym Chem
, vol.42
, pp. 5113
-
-
Hino, T.1
Inoue, N.2
Endo, T.3
-
15
-
-
0036502077
-
-
(m) Zhou, Z. Q.; Jin, B. K.; He, P. S. J Appl Polym Sci 2002, 84, 1457.
-
(2002)
J Appl Polym Sci
, vol.84
, pp. 1457
-
-
Zhou, Z.Q.1
Jin, B.K.2
He, P.S.3
-
16
-
-
84987047408
-
-
There are a large number of studies on double ring-opening reactions/polymerizations of bicyclic compounds because of their fascinating structure and unique properties. For example:(a)Bailey, W. J; Zheng, Z. F. J Polym Sci Part A: Polym Chem 1991, 29, 437.
-
(1991)
J Polym Sci Part A: Polym Chem
, vol.29
, pp. 437
-
-
Bailey, W.J.1
Zheng, Z.F.2
-
17
-
-
0001416639
-
-
(b) Kanoh, S.; Nishimura, T.; Senda, H.; Ogawa, H.; Motoi, M.; Tanaka, T.; Kano, K. Macromolecules 1999, 32, 2438.
-
(1999)
Macromolecules
, vol.32
, pp. 2438
-
-
Kanoh, S.1
Nishimura, T.2
Senda, H.3
Ogawa, H.4
Motoi, M.5
Tanaka, T.6
Kano, K.7
-
18
-
-
0037192218
-
-
(c) Kanoh, S.; Nishimura, T.; Mitta, Y; Ueyama, A.; Motoi, M.; Tanaka, T.; Kano, K. Macromolecules 2002, 35, 651.
-
(2002)
Macromolecules
, vol.35
, pp. 651
-
-
Kanoh, S.1
Nishimura, T.2
Mitta, Y.3
Ueyama, A.4
Motoi, M.5
Tanaka, T.6
Kano, K.7
-
19
-
-
0037128189
-
-
(d) Kanoh, S.; Naka, M.; Yokozuka, T.; Itoh, S.; Nishimura, T.; Honda, M.; Motoi, M.; Matsuura, N. Macromol Chem Phys 2002, 203, 511.
-
(2002)
Macromol Chem Phys
, vol.203
, pp. 511
-
-
Kanoh, S.1
Naka, M.2
Yokozuka, T.3
Itoh, S.4
Nishimura, T.5
Honda, M.6
Motoi, M.7
Matsuura, N.8
-
21
-
-
0034322878
-
-
(f) Jia, X. R.; Wang, J. F; Liu, Y; Jin, Z.; Li, M. Q.; Wei, Y. Polym Int 2000, 49, 1496.
-
(2000)
Polym Int
, vol.49
, pp. 1496
-
-
Jia, X.R.1
Wang, J.F.2
Liu, Y.3
Jin, Z.4
Li, M.Q.5
Wei, Y.6
-
22
-
-
0642305145
-
-
Incidentally, we also reported that 6-membered ring cyclic carbonates act as one of expanding monomers, and that the main deriving force of the volume expansion different from that of bicyclic expanding monomer, such as SOCs: Takata, T.; Sanda, F; Ariga, T.; Nemoto, H.; Endo, T. Macromol Rapid Commun 1997, 18, 461.
-
(1997)
Macromol Rapid Commun
, vol.18
, pp. 461
-
-
Takata, T.1
Sanda, F.2
Ariga, T.3
Nemoto, H.4
Endo, T.5
-
23
-
-
27944447781
-
-
note
-
Many applications using expanding monomers have been also investigated: e.g. the volume shrinkage of common polymerizations can be controlled by copolymerization with various amounts of expanding monomers to give the corresponding copolymers, depressing the volume shrinkage (refs. 2(h)(1) and references cited therein). However, all the applications in materials design were inevitably restricted to change from the monomers to the (co)polymers.
-
-
-
-
24
-
-
0003841870
-
-
Chapman & Hall: New York
-
Although a network formation usually causes volume shrinkage, the resulting networked polymers generally have many significant practical advantages compared with linear polymers, such as rather high mechanical strength and chemical and/or thermal stability: Griskey, R. G. Polymer Process Engineering; Chapman & Hall: New York, 1995.
-
(1995)
Polymer Process Engineering
-
-
Griskey, R.G.1
-
25
-
-
0004220163
-
-
Marcel Dekker: New York
-
Although a polymer-gel is known as a represented material showing volume change, the volume expansion, which is induced by its swelling, usually causes decrease of its mechanical strength and thermal stability such as Tg: Seymour, R. B.; Carraher, C. E., Jr. Polymer Chemistry, 3rd ed.; Marcel Dekker: New York, 1992.
-
(1992)
Polymer Chemistry, 3rd Ed.
-
-
Seymour, R.B.1
Carraher Jr., C.E.2
-
26
-
-
0343942888
-
-
(a) Endo, T.; Maruoka, S.; Yokozawa, T. Macromolecules 1987, 20, 2690.
-
(1987)
Macromolecules
, vol.20
, pp. 2690
-
-
Endo, T.1
Maruoka, S.2
Yokozawa, T.3
-
27
-
-
0345246557
-
-
(b) Endo, T.; Maruoka, S.; Yokozawa, T. J Polym Sci Polym Chem Ed 1987, 25, 2925.
-
(1987)
J Polym Sci Polym Chem Ed
, vol.25
, pp. 2925
-
-
Endo, T.1
Maruoka, S.2
Yokozawa, T.3
-
28
-
-
0033531368
-
-
Several spiro-polymers, which are subclass of ladder polymers, were reported to indicate great rigidity structure (highly crystalline-like materials) because of the lack of its rotational freedom: for example, Makhseed, S.; McKeown, N. B. Chem Commun 1999, 255.
-
(1999)
Chem Commun
, vol.255
-
-
Makhseed, S.1
McKeown, N.B.2
-
29
-
-
0037042273
-
-
Vodak, D. T.; Braun, M.; Lordanidis, L.; Plevert, J.; Stevens, M.; Beck, L.; Spence, J. C. H.; O'Keeffe, M.; Yaghi, O. M. J Am Chem Soc 2002, 124, 4942.
-
(2002)
J Am Chem Soc
, vol.124
, pp. 4942
-
-
Vodak, D.T.1
Braun, M.2
Lordanidis, L.3
Plevert, J.4
Stevens, M.5
Beck, L.6
Spence, J.C.H.7
O'Keeffe, M.8
Yaghi, O.M.9
-
30
-
-
27944439845
-
-
note
-
A representative synthetic procedure: The white solid of o-SOC (50 mg, 0.35 mmol) was dispersed in dry toluene (1 mL), and then BF3.OEt2 (0.3 mL, 1.59 mmol) was slowly added under Ar. After the mixture was stirred at 100°C for 24 h under Ar, the resulting compound was filtrated and washed with methanol with a Soxhlet extractor. The MeOH-insoluble product was dried in vacuo at 50°C for 48 h to yield 48.5 mg of a pale grayish solid (97%, NP-1).
-
-
-
-
31
-
-
27944486859
-
-
note
-
We can not quantitatively estimate the ratio of the ring-opened SOC units at this stage, although it is expected that this ratio strongly relates to degree of the volume expansion.
-
-
-
-
32
-
-
27944454517
-
-
note
-
The elemental analysis (EA) result of NP-1 also suggests that the change from o-SOC to NP-1 is based on the double ring-opening structural isomerization, at least partially. Found EA for NP-1: C, 49.95; H, 5.76. Cf. calcd. EA for o-SOC, C6H804: C, 50.00; H, 5.60.
-
-
-
-
33
-
-
27944494533
-
-
note
-
We carefully measured the change in volume after the polymerization by a density gradient tube method (refs. 1(b), 2(c)-(1), and references cited therein). The typical measurement method is as follows: At first, the powdered sample was pressed in the shape of a pellet under vacuum. The sample was dipped for a while in aqueous solution containing a surface-active agent in order to remove air bubbles adhering to the sample surface as much as possible, and then the density was measured. In addition, the reproducibility in the present measurement is very sufficient, even with small amount of sample.
-
-
-
-
34
-
-
27944437176
-
-
note
-
The chemical stability of NP-1 should be mainly based on the networked structure via the double ring-opening reactions, while that of NP-2 might be predominantly based on the unreacted o-SOC structures. Incidentally, o-SOC has a high chemical stability, because of its ordered structure (see ref. 10).
-
-
-
|