메뉴 건너뛰기




Volumn 27, Issue 3, 2006, Pages 187-200

Maxdiff kd-trees for data condensation

Author keywords

Data representation; Multiresolution kd trees; Prototype selection

Indexed keywords

ALGORITHMS; DATA REDUCTION; PROBLEM SOLVING; SET THEORY; SOFTWARE PROTOTYPING;

EID: 28044469490     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2005.08.015     Document Type: Article
Times cited : (33)

References (21)
  • 2
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman Arcing classifiers Ann. Statist. 26 3 1998 801 849
    • (1998) Ann. Statist. , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 3
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D.S. Broomhead, and D. Lowe Multivariable functional interpolation and adaptive networks Complex Syst. 2 1988 321 355
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 6
    • 0031062148 scopus 로고    scopus 로고
    • Finding prototypes for nearest neighbour classification by means of gradient descent and deterministic annealing
    • C. Decaestecker Finding prototypes for nearest neighbour classification by means of gradient descent and deterministic annealing Pattern Recognition 30 2 1997 281 288
    • (1997) Pattern Recognition , vol.30 , Issue.2 , pp. 281-288
    • Decaestecker, C.1
  • 7
    • 84945709355 scopus 로고    scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • J.H. Friedman, J.L. Bentley, and R.A. Finkel An algorithm for finding best matches in logarithmic expected time ACM Trans. Math. Software 3 3 1997 209 226
    • (1997) ACM Trans. Math. Software , vol.3 , Issue.3 , pp. 209-226
    • Friedman, J.H.1    Bentley, J.L.2    Finkel, R.A.3
  • 9
    • 0035279319 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim Cure: An efficient clustering algorithm for large databases Inform. Syst. 26 1 2001 35 58
    • (2001) Inform. Syst. , vol.26 , Issue.1 , pp. 35-58
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 10
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • P.E. Hart The condensed nearest neighbor rule IEEE Trans. Inform. Theory 14 1968 515 516
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 515-516
    • Hart, P.E.1
  • 12
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E.H. Han, and V. Kumar Chameleon: A hierarchical clustering algorithm using dynamic modeling IEEE Comput. 32 8 1999 68 75
    • (1999) IEEE Comput. , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 13
    • 84899029127 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution kd-trees
    • Moore, A.W., 1999. Very fast EM-based mixture model clustering using multiresolution kd-trees. In: Proc. Neural Information Processing Systems Conf., pp. 543-549.
    • (1999) Proc. Neural Information Processing Systems Conf. , pp. 543-549
    • Moore, A.W.1
  • 14
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • A.W. Moore, and M.S. Lee Cached sufficient statistics for efficient machine learning with large datasets J. Artif. Intell. Res. 8 1998 67 91
    • (1998) J. Artif. Intell. Res. , vol.8 , pp. 67-91
    • Moore, A.W.1    Lee, M.S.2
  • 16
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • F.J. Provost, and V. Kolluri A survey of methods for scaling up inductive algorithms Data Min. Knowl. Disc. 3 2 1999 131 169
    • (1999) Data Min. Knowl. Disc. , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.J.1    Kolluri, V.2
  • 17
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • J.S. Sanchez, F. Pla, and F.J. Ferri Prototype selection for the nearest neighbour rule through proximity graphs Pattern Recogition Lett. 18 6 1997 507 513
    • (1997) Pattern Recogition Lett. , vol.18 , Issue.6 , pp. 507-513
    • Sanchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 18
    • 84994158589 scopus 로고    scopus 로고
    • Sting: A statistical information grid approach to spatial data mining
    • Athens, Greece
    • Wang, W., Yang, J., Muntz, R., 1997. Sting: A statistical information grid approach to spatial data mining. In: Proc. 23rd Internat. Conf. on Very Large Data Bases, Athens, Greece, pp. 186-195.
    • (1997) Proc. 23rd Internat. Conf. on Very Large Data Bases , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 19
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • Montreal, Canada
    • Zhang, T., Ramakrishnan, R., Livny, M., 1996. Birch: An efficient data clustering method for very large databases. In: Proc. ACM SIGMOD Conf. on Management of Data, Montreal, Canada, pp. 103-114.
    • (1996) Proc. ACM SIGMOD Conf. on Management of Data , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 20
    • 0037869164 scopus 로고    scopus 로고
    • Criterion functions for document clustering: Experiments and analysis
    • Department of Computer Science, University of Minnesota, Minneapolis, MN
    • Zhao, Y., Karypis, G., 2001. Criterion functions for document clustering: Experiments and analysis. Technical Report 01-40, Department of Computer Science, University of Minnesota, Minneapolis, MN.
    • (2001) Technical Report , vol.1 , Issue.40
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.