메뉴 건너뛰기




Volumn 67, Issue 2, 2005, Pages 277-294

How to combine M-estimators to estimate quantiles and a score function

Author keywords

Asymptotic properties; Kernel estimators; M estimators; Quantiles; Score function; Smoothing

Indexed keywords


EID: 27944478995     PISSN: 09727671     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (5)

References (28)
  • 1
    • 77956891548 scopus 로고
    • A note on the estimation of a distribution function and quantiles by a kernel method
    • AZZALINI, A. (1981). A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika, 68, 326-328.
    • (1981) Biometrika , vol.68 , pp. 326-328
    • Azzalini, A.1
  • 2
    • 84941491426 scopus 로고
    • Asymptotic theory of least absolute error regression
    • BASSETT, G. and KOENKER, R. (1978). Asymptotic theory of least absolute error regression. J. Amer. Statist. Assoc., 73, 618-622.
    • (1978) J. Amer. Statist. Assoc. , vol.73 , pp. 618-622
    • Bassett, G.1    Koenker, R.2
  • 3
    • 0003937699 scopus 로고
    • Teubner Skripten zur Mathematischen Stochastik (Teubner Texts on Mathematical Stochastics), E.G. Teubner, Stuttgart
    • BEHNEN, K. and NEUHAUS, G. (1989). Rank Tests with Estimated Scores and their Application. Teubner Skripten zur Mathematischen Stochastik (Teubner Texts on Mathematical Stochastics), E.G. Teubner, Stuttgart.
    • (1989) Rank Tests with Estimated Scores and Their Application
    • Behnen, K.1    Neuhaus, G.2
  • 4
    • 0001186527 scopus 로고
    • The Bernstein polynomial estimator of a smooth quantile function
    • CHENG, C. (1995). The Bernstein polynomial estimator of a smooth quantile function. Statist. Probab. Lett., 24, 321-330.
    • (1995) Statist. Probab. Lett. , vol.24 , pp. 321-330
    • Cheng, C.1
  • 5
    • 0031569639 scopus 로고    scopus 로고
    • Unified estimators of smooth quantile and quantile density functions
    • CHENG, C. and PARZEN, E. (1997). Unified estimators of smooth quantile and quantile density functions. J. Statist. Plann. Inference, 59, 291-307.
    • (1997) J. Statist. Plann. Inference , vol.59 , pp. 291-307
    • Cheng, C.1    Parzen, E.2
  • 7
    • 0000818352 scopus 로고
    • Relative deficiency of kernel type estimators of quantiles
    • FALK, M. (1984). Relative deficiency of kernel type estimators of quantiles. Ann. Statist., 12, 261-268.
    • (1984) Ann. Statist. , vol.12 , pp. 261-268
    • Falk, M.1
  • 8
    • 0001263212 scopus 로고
    • Asymptotic normality of the kernel quantile estimator
    • FALK, M. (1985). Asymptotic normality of the kernel quantile estimator. Ann. Statist., 13, 428-433.
    • (1985) Ann. Statist. , vol.13 , pp. 428-433
    • Falk, M.1
  • 9
    • 0001449653 scopus 로고
    • Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates
    • FALK, M. and REISS, R.-D. (1989). Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates. Ann. Probab., 17, 362-371.
    • (1989) Ann. Probab. , vol.17 , pp. 362-371
    • Falk, M.1    Reiss, R.-D.2
  • 10
    • 0004898892 scopus 로고
    • New Directions in Statistical Data Analysis and Robustness (Ascona. 1992), Monte Veritá, Birkhäuser, Basel
    • FERNHOLZ, L.T. (1993). Smoothed versions of statistical functionals. In New Directions in Statistical Data Analysis and Robustness (Ascona. 1992), Monte Veritá, Birkhäuser, Basel, 61-72.
    • (1993) Smoothed Versions of Statistical Functionals , pp. 61-72
    • Fernholz, L.T.1
  • 11
    • 0031567959 scopus 로고    scopus 로고
    • Reducing the variance by smoothing
    • Special issue on Robust Statistics and Data Analysis I
    • FERNHOLZ, L.T. (1997). Reducing the variance by smoothing. J. Statist. Plann. Inference, 57 (Special issue on Robust Statistics and Data Analysis I), 29-38.
    • (1997) J. Statist. Plann. Inference , vol.57 , pp. 29-38
    • Fernholz, L.T.1
  • 16
    • 38249001202 scopus 로고
    • Subsampling quantile estimator majorization inequalities
    • KAIGH, W.D. and SORTO, M.A. (1993). Subsampling quantile estimator majorization inequalities. Statist. Probab. Lett., 18, 373-379.
    • (1993) Statist. Probab. Lett. , vol.18 , pp. 373-379
    • Kaigh, W.D.1    Sorto, M.A.2
  • 17
    • 4944231551 scopus 로고    scopus 로고
    • Unit root quantile autoregression inference
    • KOENKER, R. and XIAO, Z. (2004). Unit root quantile autoregression inference. J. Amer. Statist. Assoc., 99, 775-787.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 775-787
    • Koenker, R.1    Xiao, Z.2
  • 18
    • 0041357011 scopus 로고    scopus 로고
    • On M-estimators and normal quantiles
    • KOZEK, A.S. (2003). On M-estimators and normal quantiles. Ann. Statist., 31, 1170-1185.
    • (2003) Ann. Statist. , vol.31 , pp. 1170-1185
    • Kozek, A.S.1
  • 19
    • 0039840721 scopus 로고
    • Bahadur's representation of sample quantiles based on smoothed estimates of a, distribution function
    • MACK, Y.P. (1987). Bahadur's representation of sample quantiles based on smoothed estimates of a, distribution function. Probab. Math. Statist., 8, 183-189.
    • (1987) Probab. Math. Statist. , vol.8 , pp. 183-189
    • Mack, Y.P.1
  • 20
    • 0000206273 scopus 로고
    • On some useful "inefficient" statistics
    • MOSTELLER, F. (1946). On some useful "inefficient" statistics. Ann. Math. Statist., 17, 377-408.
    • (1946) Ann. Math. Statist. , vol.17 , pp. 377-408
    • Mosteller, F.1
  • 22
    • 0001102173 scopus 로고
    • Some new estimates for distribution function
    • NADARAYA, E. (1964). Some new estimates for distribution function. Theory Probab. Appl., 9, 497-500.
    • (1964) Theory Probab. Appl. , vol.9 , pp. 497-500
    • Nadaraya, E.1
  • 23
    • 79951913194 scopus 로고
    • Nonparametric statistical data modeling
    • with comments by J. W. Tukey, R.E. Welsch, W.F. Eddy, D. V. Lindley, M.E. Tarter and E.L. Crow, and a rejoinder by the author
    • PARZEN, E. (1979). Nonparametric statistical data modeling. J. Amer. Statist. Assoc., 74, 105-131 (with comments by J. W. Tukey, R.E. Welsch, W.F. Eddy, D. V. Lindley, M.E. Tarter and E.L. Crow, and a rejoinder by the author).
    • (1979) J. Amer. Statist. Assoc. , vol.74 , pp. 105-131
    • Parzen, E.1
  • 24
    • 38249008218 scopus 로고
    • Asymptotic deviations between perturbed empirical and quantile processes
    • RALESCU, S.S. (1992). Asymptotic deviations between perturbed empirical and quantile processes. J. Statist. Plann. Inference, 32, 243-258.
    • (1992) J. Statist. Plann. Inference , vol.32 , pp. 243-258
    • Ralescu, S.S.1
  • 25
    • 0030337155 scopus 로고    scopus 로고
    • A Bahadur-Kiefer law for the Nadaraya empiric-quantile processes
    • RALESCU, S.S. (1996). A Bahadur-Kiefer law for the Nadaraya empiric-quantile processes. Tear. Veroyatnost. i Primenen., 41, 380-392.
    • (1996) Tear. Veroyatnost. I Primenen. , vol.41 , pp. 380-392
    • Ralescu, S.S.1
  • 26
    • 0001849730 scopus 로고
    • Necessary and sufficient conditions for the asymptotic normality of perturbed sample quantiles
    • RALESCU, S.S. and SUN, S. (1993). Necessary and sufficient conditions for the asymptotic normality of perturbed sample quantiles. J. Statist. Plann. Inference, 35, 55-64.
    • (1993) J. Statist. Plann. Inference , vol.35 , pp. 55-64
    • Ralescu, S.S.1    Sun, S.2
  • 28
    • 0002625198 scopus 로고
    • Uniform convergence of an estimator of a distribution function
    • YAMATO, H. (1972-73). Uniform convergence of an estimator of a distribution function. Bull. Math. Statist., 15, 69-78.
    • (1972) Bull. Math. Statist. , vol.15 , pp. 69-78
    • Yamato, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.