-
1
-
-
84968476146
-
The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities
-
ANDERSON, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math, Soc. 6 170-176.
-
(1955)
Proc. Amer. Math, Soc.
, vol.6
, pp. 170-176
-
-
Anderson, T.W.1
-
2
-
-
38249007526
-
Nonparametric regression M-quantiles
-
ANTOCH, J. and JANSSEN, P. (1989). Nonparametric regression M-quantiles. Statist. Probab. Lett. 8 355-362.
-
(1989)
Statist. Probab. Lett.
, vol.8
, pp. 355-362
-
-
Antoch, J.1
Janssen, P.2
-
3
-
-
77956891548
-
A note on the estimation of a distribution function and quantiles by a kernel method
-
AZZALINI, A. (1981). A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68 326-328.
-
(1981)
Biometrika
, vol.68
, pp. 326-328
-
-
Azzalini, A.1
-
4
-
-
84941491426
-
Asymptotic theory of least absolute error regression
-
BASSETT, G. and KOENKER, R. (1978). Asymptotic theory of least absolute error regression. J. Amer. Statist. Assoc. 73 618-622.
-
(1978)
J. Amer. Statist. Assoc.
, vol.73
, pp. 618-622
-
-
Bassett, G.1
Koenker, R.2
-
6
-
-
0011113473
-
Generalized regression quantiles: Forming a useful toolkit for robust linear regression
-
(Y. Dodge, ed.) North-Holland, Amsterdam
-
1 -Statistical Analysis and Related Methods (Y. Dodge, ed.) 169-185. North-Holland, Amsterdam.
-
(1992)
1 -Statistical Analysis and Related Methods
, pp. 169-185
-
-
Chaudhuri, P.1
-
7
-
-
0030540155
-
On a geometric notion of quantiles for multivariate data
-
CHAUDHURI, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc. 91 862-872.
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, pp. 862-872
-
-
Chaudhuri, P.1
-
8
-
-
0031569639
-
Unified estimators of smooth quantile and quantile density functions
-
CHENG, C. and PARZEN, E. (1997). Unified estimators of smooth quantile and quantile density functions. J. Statist. Plann. Inference 59 291-307.
-
(1997)
J. Statist. Plann. Inference
, vol.59
, pp. 291-307
-
-
Cheng, C.1
Parzen, E.2
-
9
-
-
0002057896
-
Regression percentiles using asymmetric squared error loss
-
EFRON, B. (1991). Regression percentiles using asymmetric squared error loss. Statist. Sinica 1 93-125.
-
(1991)
Statist. Sinica
, vol.1
, pp. 93-125
-
-
Efron, B.1
-
10
-
-
0000818352
-
Relative deficiency of kernel type estimators of quantiles
-
FALK, M. (1984). Relative deficiency of kernel type estimators of quantiles. Ann. Statist. 12 261-268.
-
(1984)
Ann. Statist.
, vol.12
, pp. 261-268
-
-
Falk, M.1
-
11
-
-
0001449653
-
Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates
-
FALK, M. and REISS, R.-D. (1989). Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates. Ann. Probab. 17 362-371.
-
(1989)
Ann. Probab.
, vol.17
, pp. 362-371
-
-
Falk, M.1
Reiss, R.-D.2
-
13
-
-
0003841907
-
-
Wiley, New York
-
HAMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J. and STAHEL, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Wiley, New York.
-
(1986)
Robust Statistics: The Approach Based on Influence Functions
-
-
Hampel, F.R.1
Ronchetti, E.M.2
Rousseeuw, P.J.3
Stahel, W.A.4
-
14
-
-
0003157339
-
Robust estimation of a location parameter
-
HUBER, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101.
-
(1964)
Ann. Math. Statist.
, vol.35
, pp. 73-101
-
-
Huber, P.J.1
-
15
-
-
0000250624
-
The behavior of maximum likelihood estimates under nonstandard conditions
-
Univ. California Press, Berkeley
-
HUBER, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 221-233. Univ. California Press, Berkeley.
-
(1967)
Proc. Fifth Berkeley Symp. Math. Statist. Probab.
, vol.1
, pp. 221-233
-
-
Huber, P.J.1
-
17
-
-
38149147902
-
Expectiles and M-quantiles are quantiles
-
JONES, M. C. (1994). Expectiles and M-quantiles are quantiles. Statist. Probab. Lett. 20 149-153.
-
(1994)
Statist. Probab. Lett.
, vol.20
, pp. 149-153
-
-
Jones, M.C.1
-
18
-
-
0000895653
-
Subsampling quantile estimators and uniformity criteria
-
KAIGH, W. D. and CHENG, C. (1991). Subsampling quantile estimators and uniformity criteria. Comm. Statist. Theory Methods 20 539-560.
-
(1991)
Comm. Statist. Theory Methods
, vol.20
, pp. 539-560
-
-
Kaigh, W.D.1
Cheng, C.2
-
19
-
-
0000044484
-
The median for a finite measure on a Banach space
-
(Y. Dodge, ed.) North-Holland, Amsterdam
-
1-Norm and Related Methods (Y. Dodge, ed.) 217-230. North-Holland, Amsterdam.
-
(1987)
1-Norm and Related Methods
, pp. 217-230
-
-
Kemperman, J.H.B.1
-
20
-
-
0031493777
-
M -estimation, convexity and quantiles
-
KOLTCHINSKII, V. I. (1997). M -estimation, convexity and quantiles. Ann. Statist. 25 435-477.
-
(1997)
Ann. Statist.
, vol.25
, pp. 435-477
-
-
Koltchinskii, V.I.1
-
22
-
-
0037100715
-
Distribution-free consistency of kernel nonparametric M-estimators
-
KOZEK, A. S. and PAWLAK, M. (2002). Distribution-free consistency of kernel nonparametric M-estimators. Statist. Probab. Lett. 58 343-353.
-
(2002)
Statist. Probab. Lett.
, vol.58
, pp. 343-353
-
-
Kozek, A.S.1
Pawlak, M.2
-
23
-
-
0039840721
-
Bahadur's representation of sample quantiles based on smoothed estimates of a distribution function
-
MACK, Y. P. (1987). Bahadur's representation of sample quantiles based on smoothed estimates of a distribution function. Probab. Math. Statist. 8 183-189.
-
(1987)
Probab. Math. Statist.
, vol.8
, pp. 183-189
-
-
Mack, Y.P.1
-
24
-
-
0000649742
-
Uniqueness of the spatial median
-
MILASEVIC, P. and DUCHARME, G. R. (1987). Uniqueness of the spatial median. Ann. Statist. 15 1332-1333.
-
(1987)
Ann. Statist.
, vol.15
, pp. 1332-1333
-
-
Milasevic, P.1
Ducharme, G.R.2
-
25
-
-
0001102173
-
Some new estimates for distribution functions
-
NADARAYA, È. (1964). Some new estimates for distribution functions. Theory Probab. Appl. 9 497-500.
-
(1964)
Theory Probab. Appl.
, vol.9
, pp. 497-500
-
-
Nadaraya, È.1
-
26
-
-
0000940392
-
Asymmetric least squares estimation and testing
-
NEWEY, W. K. and POWELL, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica 55 819-847.
-
(1987)
Econometrica
, vol.55
, pp. 819-847
-
-
Newey, W.K.1
Powell, J.L.2
-
27
-
-
79951913194
-
Nonparametric statistical data modeling
-
PARZEN, E. (1979). Nonparametric statistical data modeling (with discussion). J. Amer. Statist. Assoc. 74 105-131.
-
(1979)
J. Amer. Statist. Assoc.
, vol.74
, pp. 105-131
-
-
Parzen, E.1
-
28
-
-
0141641725
-
Investigating the quantile of an unknown distribution
-
(W. J. Ziegler, ed.) Birkhäuser, Basel
-
PFANZAGL, J. (1976). Investigating the quantile of an unknown distribution. In Contributions to Applied Statistics (W. J. Ziegler, ed.) 111-126. Birkhäuser, Basel.
-
(1976)
Contributions to Applied Statistics
, pp. 111-126
-
-
Pfanzagl, J.1
-
29
-
-
38249008218
-
Asymptotic deviations between perturbed empirical and quantile processes
-
RALESCU, S. S. (1992). Asymptotic deviations between perturbed empirical and quantile processes. J. Statist. Plann. Inference 32 243-258.
-
(1992)
J. Statist. Plann. Inference
, vol.32
, pp. 243-258
-
-
Ralescu, S.S.1
-
31
-
-
0001742955
-
Weak convergence of smoothed empirical processes
-
VAN DER VAART, A. (1994). Weak convergence of smoothed empirical processes. Scand. J. Statist. 21 501-504.
-
(1994)
Scand. J. Statist.
, vol.21
, pp. 501-504
-
-
Van Der Vaart, A.1
-
32
-
-
0000669703
-
On the asymptotic distribution of differentiable statistical functions
-
VON MISES, R. (1947). On the asymptotic distribution of differentiable statistical functions. Ann. Math. Statist. 18 309-348.
-
(1947)
Ann. Math. Statist.
, vol.18
, pp. 309-348
-
-
Von Mises, R.1
-
33
-
-
0001581756
-
Weak convergence of smoothed empirical processes
-
YUKICH, J. E. (1992). Weak convergence of smoothed empirical processes. Scand. J. Statist. 19 271-279.
-
(1992)
Scand. J. Statist.
, vol.19
, pp. 271-279
-
-
Yukich, J.E.1
|