메뉴 건너뛰기




Volumn 31, Issue 4, 2003, Pages 1170-1185

On M-Estimators and normal quantiles

Author keywords

a quantiles; Asymptotics; M functional; M estimator; Normal quantiles; Robust

Indexed keywords


EID: 0041357011     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1059655910     Document Type: Article
Times cited : (4)

References (33)
  • 1
    • 84968476146 scopus 로고
    • The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities
    • ANDERSON, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math, Soc. 6 170-176.
    • (1955) Proc. Amer. Math, Soc. , vol.6 , pp. 170-176
    • Anderson, T.W.1
  • 2
    • 38249007526 scopus 로고
    • Nonparametric regression M-quantiles
    • ANTOCH, J. and JANSSEN, P. (1989). Nonparametric regression M-quantiles. Statist. Probab. Lett. 8 355-362.
    • (1989) Statist. Probab. Lett. , vol.8 , pp. 355-362
    • Antoch, J.1    Janssen, P.2
  • 3
    • 77956891548 scopus 로고
    • A note on the estimation of a distribution function and quantiles by a kernel method
    • AZZALINI, A. (1981). A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68 326-328.
    • (1981) Biometrika , vol.68 , pp. 326-328
    • Azzalini, A.1
  • 4
    • 84941491426 scopus 로고
    • Asymptotic theory of least absolute error regression
    • BASSETT, G. and KOENKER, R. (1978). Asymptotic theory of least absolute error regression. J. Amer. Statist. Assoc. 73 618-622.
    • (1978) J. Amer. Statist. Assoc. , vol.73 , pp. 618-622
    • Bassett, G.1    Koenker, R.2
  • 6
    • 0011113473 scopus 로고
    • Generalized regression quantiles: Forming a useful toolkit for robust linear regression
    • (Y. Dodge, ed.) North-Holland, Amsterdam
    • 1 -Statistical Analysis and Related Methods (Y. Dodge, ed.) 169-185. North-Holland, Amsterdam.
    • (1992) 1 -Statistical Analysis and Related Methods , pp. 169-185
    • Chaudhuri, P.1
  • 7
    • 0030540155 scopus 로고    scopus 로고
    • On a geometric notion of quantiles for multivariate data
    • CHAUDHURI, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc. 91 862-872.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 862-872
    • Chaudhuri, P.1
  • 8
    • 0031569639 scopus 로고    scopus 로고
    • Unified estimators of smooth quantile and quantile density functions
    • CHENG, C. and PARZEN, E. (1997). Unified estimators of smooth quantile and quantile density functions. J. Statist. Plann. Inference 59 291-307.
    • (1997) J. Statist. Plann. Inference , vol.59 , pp. 291-307
    • Cheng, C.1    Parzen, E.2
  • 9
    • 0002057896 scopus 로고
    • Regression percentiles using asymmetric squared error loss
    • EFRON, B. (1991). Regression percentiles using asymmetric squared error loss. Statist. Sinica 1 93-125.
    • (1991) Statist. Sinica , vol.1 , pp. 93-125
    • Efron, B.1
  • 10
    • 0000818352 scopus 로고
    • Relative deficiency of kernel type estimators of quantiles
    • FALK, M. (1984). Relative deficiency of kernel type estimators of quantiles. Ann. Statist. 12 261-268.
    • (1984) Ann. Statist. , vol.12 , pp. 261-268
    • Falk, M.1
  • 11
    • 0001449653 scopus 로고
    • Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates
    • FALK, M. and REISS, R.-D. (1989). Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates. Ann. Probab. 17 362-371.
    • (1989) Ann. Probab. , vol.17 , pp. 362-371
    • Falk, M.1    Reiss, R.-D.2
  • 14
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • HUBER, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101.
    • (1964) Ann. Math. Statist. , vol.35 , pp. 73-101
    • Huber, P.J.1
  • 15
    • 0000250624 scopus 로고
    • The behavior of maximum likelihood estimates under nonstandard conditions
    • Univ. California Press, Berkeley
    • HUBER, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 221-233. Univ. California Press, Berkeley.
    • (1967) Proc. Fifth Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 221-233
    • Huber, P.J.1
  • 17
    • 38149147902 scopus 로고
    • Expectiles and M-quantiles are quantiles
    • JONES, M. C. (1994). Expectiles and M-quantiles are quantiles. Statist. Probab. Lett. 20 149-153.
    • (1994) Statist. Probab. Lett. , vol.20 , pp. 149-153
    • Jones, M.C.1
  • 18
    • 0000895653 scopus 로고
    • Subsampling quantile estimators and uniformity criteria
    • KAIGH, W. D. and CHENG, C. (1991). Subsampling quantile estimators and uniformity criteria. Comm. Statist. Theory Methods 20 539-560.
    • (1991) Comm. Statist. Theory Methods , vol.20 , pp. 539-560
    • Kaigh, W.D.1    Cheng, C.2
  • 19
    • 0000044484 scopus 로고
    • The median for a finite measure on a Banach space
    • (Y. Dodge, ed.) North-Holland, Amsterdam
    • 1-Norm and Related Methods (Y. Dodge, ed.) 217-230. North-Holland, Amsterdam.
    • (1987) 1-Norm and Related Methods , pp. 217-230
    • Kemperman, J.H.B.1
  • 20
    • 0031493777 scopus 로고    scopus 로고
    • M -estimation, convexity and quantiles
    • KOLTCHINSKII, V. I. (1997). M -estimation, convexity and quantiles. Ann. Statist. 25 435-477.
    • (1997) Ann. Statist. , vol.25 , pp. 435-477
    • Koltchinskii, V.I.1
  • 22
    • 0037100715 scopus 로고    scopus 로고
    • Distribution-free consistency of kernel nonparametric M-estimators
    • KOZEK, A. S. and PAWLAK, M. (2002). Distribution-free consistency of kernel nonparametric M-estimators. Statist. Probab. Lett. 58 343-353.
    • (2002) Statist. Probab. Lett. , vol.58 , pp. 343-353
    • Kozek, A.S.1    Pawlak, M.2
  • 23
    • 0039840721 scopus 로고
    • Bahadur's representation of sample quantiles based on smoothed estimates of a distribution function
    • MACK, Y. P. (1987). Bahadur's representation of sample quantiles based on smoothed estimates of a distribution function. Probab. Math. Statist. 8 183-189.
    • (1987) Probab. Math. Statist. , vol.8 , pp. 183-189
    • Mack, Y.P.1
  • 24
    • 0000649742 scopus 로고
    • Uniqueness of the spatial median
    • MILASEVIC, P. and DUCHARME, G. R. (1987). Uniqueness of the spatial median. Ann. Statist. 15 1332-1333.
    • (1987) Ann. Statist. , vol.15 , pp. 1332-1333
    • Milasevic, P.1    Ducharme, G.R.2
  • 25
    • 0001102173 scopus 로고
    • Some new estimates for distribution functions
    • NADARAYA, È. (1964). Some new estimates for distribution functions. Theory Probab. Appl. 9 497-500.
    • (1964) Theory Probab. Appl. , vol.9 , pp. 497-500
    • Nadaraya, È.1
  • 26
    • 0000940392 scopus 로고
    • Asymmetric least squares estimation and testing
    • NEWEY, W. K. and POWELL, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica 55 819-847.
    • (1987) Econometrica , vol.55 , pp. 819-847
    • Newey, W.K.1    Powell, J.L.2
  • 27
    • 79951913194 scopus 로고
    • Nonparametric statistical data modeling
    • PARZEN, E. (1979). Nonparametric statistical data modeling (with discussion). J. Amer. Statist. Assoc. 74 105-131.
    • (1979) J. Amer. Statist. Assoc. , vol.74 , pp. 105-131
    • Parzen, E.1
  • 28
    • 0141641725 scopus 로고
    • Investigating the quantile of an unknown distribution
    • (W. J. Ziegler, ed.) Birkhäuser, Basel
    • PFANZAGL, J. (1976). Investigating the quantile of an unknown distribution. In Contributions to Applied Statistics (W. J. Ziegler, ed.) 111-126. Birkhäuser, Basel.
    • (1976) Contributions to Applied Statistics , pp. 111-126
    • Pfanzagl, J.1
  • 29
    • 38249008218 scopus 로고
    • Asymptotic deviations between perturbed empirical and quantile processes
    • RALESCU, S. S. (1992). Asymptotic deviations between perturbed empirical and quantile processes. J. Statist. Plann. Inference 32 243-258.
    • (1992) J. Statist. Plann. Inference , vol.32 , pp. 243-258
    • Ralescu, S.S.1
  • 31
    • 0001742955 scopus 로고
    • Weak convergence of smoothed empirical processes
    • VAN DER VAART, A. (1994). Weak convergence of smoothed empirical processes. Scand. J. Statist. 21 501-504.
    • (1994) Scand. J. Statist. , vol.21 , pp. 501-504
    • Van Der Vaart, A.1
  • 32
    • 0000669703 scopus 로고
    • On the asymptotic distribution of differentiable statistical functions
    • VON MISES, R. (1947). On the asymptotic distribution of differentiable statistical functions. Ann. Math. Statist. 18 309-348.
    • (1947) Ann. Math. Statist. , vol.18 , pp. 309-348
    • Von Mises, R.1
  • 33
    • 0001581756 scopus 로고
    • Weak convergence of smoothed empirical processes
    • YUKICH, J. E. (1992). Weak convergence of smoothed empirical processes. Scand. J. Statist. 19 271-279.
    • (1992) Scand. J. Statist. , vol.19 , pp. 271-279
    • Yukich, J.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.