메뉴 건너뛰기




Volumn 25, Issue 6, 2005, Pages 1775-1797

A generic bounded linear cocycle has simple Lyapunov spectrum

Author keywords

[No Author keywords available]

Indexed keywords


EID: 27844561142     PISSN: 01433857     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0143385705000337     Document Type: Article
Times cited : (18)

References (24)
  • 1
    • 9344266475 scopus 로고    scopus 로고
    • p-generic cocycels have one-point Lyapunov spectrum
    • Corrigendum Stoch. Dynam. 3 (2003), 419-120
    • p-generic cocycels have one-point Lyapunov spectrum. Stoch. Dynam. 3 (2003), 73-81. (Corrigendum Stoch. Dynam. 3 (2003), 419-120.
    • (2003) Stoch. Dynam. , vol.3 , pp. 73-81
    • Arbieto, A.1    Bochi, J.2
  • 3
    • 0031516895 scopus 로고    scopus 로고
    • On the simplicity of the Lyapunov spectrum of products of random matrices
    • L. Arnold and Nguyen Dinh Cong. On the simplicity of the Lyapunov spectrum of products of random matrices. Ergod. Th. & Dynam. Sys. 17 (1997), 1005-1025.
    • (1997) Ergod. Th. & Dynam. Sys. , vol.17 , pp. 1005-1025
    • Arnold, L.1    Nguyen Dinh Cong2
  • 6
    • 0036896073 scopus 로고    scopus 로고
    • Genericity of zero Lyapunov exponents
    • J. Bochi. Genericity of zero Lyapunov exponents. Ergod. Th. & Dynam. Sys. 22 (2002), 1667-1696.
    • (2002) Ergod. Th. & Dynam. Sys. , vol.22 , pp. 1667-1696
    • Bochi, J.1
  • 7
    • 0347146025 scopus 로고    scopus 로고
    • Uniform (projective) hyperbolicity or no hyperbolicity: A dichotomy for generic conservative maps
    • J. Bochi and M. Viana. Uniform (projective) hyperbolicity or no hyperbolicity: a dichotomy for generic conservative maps. Ann. Inst. Henri Poincaré (Analyse Non Lineaire) 19 (2002), 113-123.
    • (2002) Ann. Inst. Henri Poincaré (Analyse Non Lineaire) , vol.19 , pp. 113-123
    • Bochi, J.1    Viana, M.2
  • 8
    • 27844539745 scopus 로고    scopus 로고
    • The Lyapunov exponents of generic volume preserving and symplectic systems
    • J. Bochi and M. Viana. The Lyapunov exponents of generic volume preserving and symplectic systems. Ann. Math. 161 (2005), 1423-1485.
    • (2005) Ann. Math. , vol.161 , pp. 1423-1485
    • Bochi, J.1    Viana, M.2
  • 9
    • 9344246283 scopus 로고    scopus 로고
    • Lyapunov exponents with multiplicity 1 for deterministic products of matrices
    • C. Bonatti and M. Viana. Lyapunov exponents with multiplicity 1 for deterministic products of matrices. Ergod. Th. & Dynam. Sys. 24 (2004), 1295-1330.
    • (2004) Ergod. Th. & Dynam. Sys. , vol.24 , pp. 1295-1330
    • Bonatti, C.1    Viana, M.2
  • 12
    • 84921862731 scopus 로고
    • Lyapunov indices of a product of random matrices
    • I. Y. Goldsheid and G. A. Margulis. Lyapunov indices of a product of random matrices. Russ. Math. Surveys 44 (1989), 11-71.
    • (1989) Russ. Math. Surveys , vol.44 , pp. 11-71
    • Goldsheid, I.Y.1    Margulis, G.A.2
  • 13
    • 0039671974 scopus 로고
    • Products of random matrices: Convergence theorems
    • Y. Guivarc'h and A. Raugi. Products of random matrices: convergence theorems. Contemp. Math. 50 (1986), 31-54.
    • (1986) Contemp. Math. , vol.50 , pp. 31-54
    • Guivarc'h, Y.1    Raugi, A.2
  • 14
    • 0040312933 scopus 로고
    • Hopf bifurcation from nonperiodic solution of differential equations. I. Linear theory
    • R. A. Johnson. Hopf bifurcation from nonperiodic solution of differential equations. I. Linear theory. J. Dyn. Diff. Equations 1 (1988), 179-198.
    • (1988) J. Dyn. Diff. Equations , vol.1 , pp. 179-198
    • Johnson, R.A.1
  • 16
    • 84971942783 scopus 로고
    • Positive Lyapunov exponents for a dense set of bounded measurable S1(2,R) cocycles
    • O. Knill. Positive Lyapunov exponents for a dense set of bounded measurable S1(2,R) cocycles. Ergod. Th. & Dynam. Sys. 12 (1992), 319-331.
    • (1992) Ergod. Th. & Dynam. Sys. , vol.12 , pp. 319-331
    • Knill, O.1
  • 17
    • 0039721173 scopus 로고
    • Systems with integral separateness which are dense in the set of all linear systems of differential equations
    • V. M. Millionshchikov. Systems with integral separateness which are dense in the set of all linear systems of differential equations. Differentsial'nye Uravneniya 5 (1969), 1167-1170.
    • (1969) Differentsial'nye Uravneniya , vol.5 , pp. 1167-1170
    • Millionshchikov, V.M.1
  • 18
    • 0039721173 scopus 로고
    • English translation
    • (English translation Diff. Equations 5 (1969), 850-852.)
    • (1969) Diff. Equations , vol.5 , pp. 850-852
  • 20
    • 27844524899 scopus 로고    scopus 로고
    • A remark on non-uniform property of linear cocycles
    • Nguyen Dinh Cong. A remark on non-uniform property of linear cocycles. Vietnam J. Math. 28 (2000), 81-85.
    • (2000) Vietnam J. Math. , vol.28 , pp. 81-85
    • Nguyen Dinh Cong1
  • 21
    • 0000543733 scopus 로고
    • A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems
    • V. I. Oseledets. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197-231.
    • (1968) Trans. Moscow Math. Soc. , vol.19 , pp. 197-231
    • Oseledets, V.I.1
  • 22
    • 0001048587 scopus 로고
    • Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations
    • K. J. Palmer. Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations. J. Diff. Equations 46 (1982), 324-345.
    • (1982) J. Diff. Equations , vol.46 , pp. 324-345
    • Palmer, K.J.1
  • 23
    • 49349126301 scopus 로고
    • A spectral theory for linear differential systems
    • R. J. Sacker and G. R. Sell. A spectral theory for linear differential systems. J. Diff. Equations 27 (1978), 320-358.
    • (1978) J. Diff. Equations , vol.27 , pp. 320-358
    • Sacker, R.J.1    Sell, G.R.2
  • 24
    • 0000777202 scopus 로고
    • Some open sets of nonuniformly hyperbolic cocycles
    • L.-S. Young. Some open sets of nonuniformly hyperbolic cocycles. Ergod. Th. & Dynam. Sys. 13 (1993), 409-415.
    • (1993) Ergod. Th. & Dynam. Sys. , vol.13 , pp. 409-415
    • Young, L.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.