-
1
-
-
0036895984
-
1 diffeomorphisms of 4-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point
-
1 diffeomorphisms of 4-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point, Ergodc Theory Dynam. Systems 22 (2002), 1621-1639.
-
(2002)
Ergodc Theory Dynam. Systems
, vol.22
, pp. 1621-1639
-
-
Arnaud, M.-C.1
-
4
-
-
0036896073
-
Genericity of zero Lyapunov exponents
-
J. BOCHI, Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems 22 (2002), 1667-1696.
-
(2002)
Ergodic Theory Dynam. Systems
, vol.22
, pp. 1667-1696
-
-
Bochi, J.1
-
5
-
-
0347146025
-
Uniform (projective) hyperbolicity or no hyperbolicity: A dichotomy for generic conservative maps
-
J. SOCHI and M. VIANA, Uniform (projective) hyperbolicity or no hyperbolicity: A dichotomy for generic conservative maps, Ann. Inst. H. Poincaré - Analyse Non Linéaire 19 (2002), 113-123.
-
(2002)
Ann. Inst. H. Poincaré - Analyse Non Linéaire
, vol.19
, pp. 113-123
-
-
Sochi, J.1
Viana, M.2
-
6
-
-
30444432601
-
Lyapunov exponents: How frequently are dynamical systems hyperbolic?
-
Cambridge Univ. Press, Cambridge
-
J. BOCHI and M. VIANA, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, in Modern Dynamical Systems and Applications, 271-297, Cambridge Univ. Press, Cambridge, 2004.
-
(2004)
Modern Dynamical Systems and Applications
, pp. 271-297
-
-
Bochi, J.1
Viana, M.2
-
7
-
-
0039332325
-
Persistent nonhyperbolic transitive diffeomorphisms
-
C. BONATTI and L. J. DÍAZ, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1966), 357-396.
-
(1966)
Ann. of Math.
, vol.143
, pp. 357-396
-
-
Bonatti, C.1
Díaz, L.J.2
-
8
-
-
0346829860
-
1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources
-
1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003), 355-418.
-
(2003)
Ann. of Math.
, vol.158
, pp. 355-418
-
-
Bonatti, C.D.1
Díaz, L.J.2
Pujals, E.3
-
10
-
-
0141450327
-
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential
-
J. BOURGAIN and S. JITOMIRSKAYA, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Statist. Phys. 108 (2002), 1203-1218.
-
(2002)
J. Statist. Phys.
, vol.108
, pp. 1203-1218
-
-
Bourgain, J.1
Jitomirskaya, S.2
-
12
-
-
0040843410
-
Partial hyperbolicity and robust transitivity
-
L. J. DÍAZ, E. PUJALS, AND R. URES, Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), 1-43.
-
(1999)
Acta Math.
, vol.183
, pp. 1-43
-
-
Díaz, L.J.1
Pujals, E.2
Ures, R.3
-
13
-
-
0036012122
-
Every compact manifold carries a completely hyperbolic diffeomorphism
-
D. DOLGOPYAT and Y. PESIN, Every compact manifold carries a completely hyperbolic diffeomorphism, Ergodic Theory Dynam. Systems 22 (2002), 409-435.
-
(2002)
Ergodic Theory Dynam. Systems
, vol.22
, pp. 409-435
-
-
Dolgopyat, D.1
Pesin, Y.2
-
14
-
-
84968508586
-
Noncommuting random products
-
H. FURSTENBERG, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377-428.
-
(1963)
Trans. Amer. Math. Soc.
, vol.108
, pp. 377-428
-
-
Furstenberg, H.1
-
15
-
-
0003972403
-
-
Academic Press, New York
-
S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
-
(1978)
Differential Geometry, Lie Groups, and Symmetric Spaces
-
-
Helgason, S.1
-
16
-
-
51249181642
-
Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème de Arnold et Moser sur le tore de dimension 2
-
M. HERMAN, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème de Arnold et Moser sur le tore de dimension 2, Comment. Math. Helv. 58 (1983), 453-502.
-
(1983)
Comment. Math. Helv.
, vol.58
, pp. 453-502
-
-
Herman, M.1
-
17
-
-
77956813930
-
Lyapunov indices determine absolutely continuous spectra, of stationary random one-dimensional Schrödinger operators
-
(Katata/Kyoto, 1982), North Holland, Amsterdam
-
S. KOTANI, Lyapunov indices determine absolutely continuous spectra, of stationary random one-dimensional Schrödinger operators, in Stochastic Analysis (Katata/Kyoto, 1982), 225-247, North Holland, Amsterdam, 1984.
-
(1984)
Stochastic Analysis
, pp. 225-247
-
-
Kotani, S.1
-
18
-
-
0003391813
-
-
Academic Press, New York
-
K. KURATOWSKI, Topology, vol. 1, Academic Press, New York, 1966.
-
(1966)
Topology
, vol.1
-
-
Kuratowski, K.1
-
19
-
-
0002591030
-
Oseledec's theorem from the generic, viewpoint
-
Warszawa
-
R. MAÑÉ, Oseledec's theorem from the generic, viewpoint, Proc. Internat. Congress of Mathematicians, Warszawa, vol. 2, 1269-1276, 1983.
-
(1983)
Proc. Internat. Congress of Mathematicians
, vol.2
, pp. 1269-1276
-
-
Mañé, R.1
-
20
-
-
0001119385
-
The Lyapunov exponents of generic area-preserving diffeomorphisms
-
International Conference on Dynamical Systems (Montevideo, 1995), Longman, Harlow
-
_, The Lyapunov exponents of generic area-preserving diffeomorphisms, International Conference on Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. Ser. 362 (1996), 110-119, Longman, Harlow.
-
(1996)
Pitman Res. Notes Math. Ser.
, vol.362
, pp. 110-119
-
-
-
21
-
-
30444442028
-
-
Princeton Univ. Press, Princeton, NJ
-
E. J. MCSHANE, Integration, Ann. of Math. Studies 31, Princeton Univ. Press, Princeton, NJ, 1947.
-
(1947)
Integration, Ann. of Math. Studies
, vol.31
-
-
Mcshane, E.J.1
-
22
-
-
30444439470
-
Baire classes of functions and Lyapunov exponents. XII
-
V. M. MILLIONSHCHIKOV, Baire classes of functions and Lyapunov exponents. XII, Differ. Uravn. 19 (1983), 215-220.
-
(1983)
Differ. Uravn.
, vol.19
, pp. 215-220
-
-
Millionshchikov, V.M.1
-
23
-
-
84968494100
-
On the volume elements on a manifold
-
J. MOSER, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294.
-
(1965)
Trans. Amer. Math. Soc.
, vol.120
, pp. 286-294
-
-
Moser, J.1
-
24
-
-
0041436322
-
Positive exponents for a dense set of continuous SL(2, R) valued cocycles which arise as solutions to strongly accessible linear differential systems
-
M. NERURKAR, Positive exponents for a dense set of continuous SL(2, R) valued cocycles which arise as solutions to strongly accessible linear differential systems, Contemp. Math. 215 (1998), 265-278.
-
(1998)
Contemp. Math.
, vol.215
, pp. 265-278
-
-
Nerurkar, M.1
-
25
-
-
0001128134
-
Quasi-elliptic points in conservative dynamical systems
-
S. NEWHOUSE, Quasi-elliptic points in conservative dynamical systems, Amer. J. Math. 99 (1977), 1061-1087.
-
(1977)
Amer. J. Math.
, vol.99
, pp. 1061-1087
-
-
Newhouse, S.1
-
26
-
-
0000543733
-
A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems
-
V. I. OSELEDETS, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231.
-
(1968)
Trans. Moscow Math. Soc.
, vol.19
, pp. 197-231
-
-
Oseledets, V.I.1
-
27
-
-
0001417119
-
Measure-preserving homeomorphisms and metrical transitivity
-
J. C. OXTOBY and S. M. ULAM, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (1941), 874-920.
-
(1941)
Ann. of Math.
, vol.42
, pp. 874-920
-
-
Oxtoby, J.C.1
Ulam, S.M.2
-
29
-
-
0002890056
-
Analyticity properties of the characteristic exponents of random matrix products
-
D. RUELLE, Analyticity properties of the characteristic exponents of random matrix products, Adv. Math. 32 (1979), 68-80.
-
(1979)
Adv. Math.
, vol.32
, pp. 68-80
-
-
Ruelle, D.1
-
30
-
-
0011835524
-
Note on smoothing symplectic and volume-preserving diffeomorphisms
-
E. ZEHNDER, Note on smoothing symplectic and volume-preserving diffeomorphisms, Lecture Notes in Math. 597 (1977), 828-854.
-
(1977)
Lecture Notes in Math.
, vol.597
, pp. 828-854
-
-
Zehnder, E.1
|