메뉴 건너뛰기




Volumn 23, Issue , 2005, Pages 123-165

Restricted value iteration: Theory and algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ITERATIVE METHODS; OPTIMAL CONTROL SYSTEMS; SYSTEMS ANALYSIS;

EID: 27344454651     PISSN: 10769757     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.1379     Document Type: Article
Times cited : (7)

References (46)
  • 1
    • 50549213583 scopus 로고
    • Optimal control of Markov decision processes with incomplete state estimation
    • Aström, K. J. (1965). Optimal control of Markov decision processes with incomplete state estimation. Journal of Mathematical Analysis and Applications, 10, 403-406.
    • (1965) Journal of Mathematical Analysis and Applications , vol.10 , pp. 403-406
    • Aström, K.J.1
  • 2
    • 0029210635 scopus 로고
    • Learning to act using real-time dynamic programming
    • Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic programming. Artificial Intelligence, 72, 81-138.
    • (1995) Artificial Intelligence , vol.72 , pp. 81-138
    • Barto, A.G.1    Bradtke, S.J.2    Singh, S.P.3
  • 7
    • 0030349220 scopus 로고    scopus 로고
    • Computing optimal policies for partially observable decision processes using compact representations
    • Portland, Oregon
    • Boutilier, C., & Poole, D. (1996). Computing optimal policies for partially observable decision processes using compact representations. In Thirteenth National Conference on Artificial Intelligence (AAAI), pp. 1168-1175. Portland, Oregon.
    • (1996) Thirteenth National Conference on Artificial Intelligence (AAAI) , pp. 1168-1175
    • Boutilier, C.1    Poole, D.2
  • 8
    • 0030570119 scopus 로고    scopus 로고
    • On the complexity of partially observed Markov decision processes
    • Burago, D., de Rougemont, M., & Slissekno, A. (1996). On the complexity of partially observed Markov decision processes. Theoretical Computer Science, 157(2), 161-183.
    • (1996) Theoretical Computer Science , vol.157 , Issue.2 , pp. 161-183
    • Burago, D.1    De Rougemont, M.2    Slissekno, A.3
  • 21
    • 0001770240 scopus 로고    scopus 로고
    • Value-function approximations for partially observable Markov decision processes
    • Hauskrecht, M. (2000). Value-function approximations for partially observable Markov decision processes. Journal of Artificial Intelligence Research, 13, 33-94.
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 33-94
    • Hauskrecht, M.1
  • 23
  • 25
    • 0003596835 scopus 로고
    • Efficient dynamic programming updates in partially observable Markov decision processes
    • Department of Computer Science, Brown University
    • Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995). Efficient dynamic programming updates in partially observable Markov decision processes. Tech. rep. CS-95-19, Department of Computer Science, Brown University.
    • (1995) Tech. Rep. , vol.CS-95-19
    • Littman, M.L.1    Cassandra, A.R.2    Kaelbling, L.P.3
  • 27
    • 0000494894 scopus 로고
    • Computationally feasible bounds for partially observed Markov decision processes
    • Lovejoy, W. S. (1991). Computationally feasible bounds for partially observed Markov decision processes. Operations Research, 39(1), 162-175.
    • (1991) Operations Research , vol.39 , Issue.1 , pp. 162-175
    • Lovejoy, W.S.1
  • 29
    • 0019909899 scopus 로고
    • A survey of partially observable Markov decision processes: Theory, models, and algorithms
    • Monahan, G. E. (1982). A survey of partially observable Markov decision processes: theory, models, and algorithms. Management Science, 28(1), 1-16.
    • (1982) Management Science , vol.28 , Issue.1 , pp. 1-16
    • Monahan, G.E.1
  • 37
    • 0015658957 scopus 로고
    • The optimal control of partially observable Markov processes over a finite horizon
    • Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable Markov processes over a finite horizon. Operations Research, 21, 1071-1088.
    • (1973) Operations Research , vol.21 , pp. 1071-1088
    • Smallwood, R.D.1    Sondik, E.J.2
  • 40
    • 85016628903 scopus 로고    scopus 로고
    • A model approximation scheme for planning in partially observable stochastic domains
    • Zhang, N. L., & Liu, W. (1997). A model approximation scheme for planning in partially observable stochastic domains. Journal of Artificial Intelligence Research, 7, 199-230.
    • (1997) Journal of Artificial Intelligence Research , vol.7 , pp. 199-230
    • Zhang, N.L.1    Liu, W.2
  • 42
    • 0036374229 scopus 로고    scopus 로고
    • Speeding up the convergence of value iteration in partially observable Markov decision processes
    • Zhang, N. L., & Zhang, W. (2001b). Speeding up the convergence of value iteration in partially observable Markov decision processes. Journal of Artificial Intelligence Research, 14, 29-51.
    • (2001) Journal of Artificial Intelligence Research , vol.14 , pp. 29-51
    • Zhang, N.L.1    Zhang, W.2
  • 43
    • 0003881464 scopus 로고    scopus 로고
    • Ph.D. thesis, Department of Computer Science, the Hong Kong University of Science and Technology
    • Zhang, W. (2001). Algorithms for partially observable Markov decision processes. Ph.D. thesis, Department of Computer Science, the Hong Kong University of Science and Technology.
    • (2001) Algorithms for Partially Observable Markov Decision Processes
    • Zhang, W.1
  • 46
    • 84867833986 scopus 로고    scopus 로고
    • A POMDP approximation algorithm that anticipates the need to observe
    • Lecture Notes in Computer Science, New York: Springer-Verlag
    • Zubek, V. B., & Dietterich, T. G. (2000). A POMDP approximation algorithm that anticipates the need to observe. In Proceedings of PRICAI-2000, pp. 521-532. Lecture Notes in Computer Science, New York: Springer-Verlag.
    • (2000) Proceedings of PRICAI-2000 , pp. 521-532
    • Zubek, V.B.1    Dietterich, T.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.