메뉴 건너뛰기




Volumn 39, Issue 2, 2005, Pages 127-161

Numerical construction of parameter maximin D-optimal designs for binary response models

Author keywords

Bayesian D optimality; Binary response model; Maximin D optimality; Prior distribution; Robust optimal design

Indexed keywords


EID: 27344439634     PISSN: 0038271X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (18)
  • 2
    • 0000083715 scopus 로고
    • Optimal Bayesian experimental design applied to logistic regression
    • CHALONER, K. AND LARNTZ, K. (1989). Optimal Bayesian experimental design applied to logistic regression. Journal of Statistical Planning and Inference, 21, 191-208.
    • (1989) Journal of Statistical Planning and Inference , vol.21 , pp. 191-208
    • Chaloner, K.1    Larntz, K.2
  • 3
    • 0001653224 scopus 로고
    • Locally optimal designs for estimating parameters
    • CHERNOFF, H. (1953). Locally optimal designs for estimating parameters. Annals of Mathematical Statistics, 24, 586-602.
    • (1953) Annals of Mathematical Statistics , vol.24 , pp. 586-602
    • Chernoff, H.1
  • 4
    • 0002487793 scopus 로고    scopus 로고
    • Designing experiments with respect to standardized optimality criteria
    • DETTE, H. (1997). Designing experiments with respect to standardized optimality criteria. Journal of the Royal Statistical Society, Ser. B, 59, No. 1, 97-110.
    • (1997) Journal of the Royal Statistical Society, Ser. B , vol.59 , Issue.1 , pp. 97-110
    • Dette, H.1
  • 5
    • 16244403268 scopus 로고    scopus 로고
    • Maximin and Bayesian optimal designs for regression models
    • Under revision for
    • DETTE, H., HAINES, L. AND IMHOF, L. (2003). Maximin and Bayesian optimal designs for regression models. Under revision for: Annals of Statistics, http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm.
    • (2003) Annals of Statistics
    • Dette, H.1    Haines, L.2    Imhof, L.3
  • 6
    • 23744504197 scopus 로고    scopus 로고
    • Maximin and Bayesian optimal designs for heteroscedastic regression models
    • To appear in
    • DETTE, H., HAINES, L. AND IMHOF, L. (2005). Maximin and Bayesian optimal designs for heteroscedastic regression models. To appear in: Canadian Journal of Statistics, 33, No. 2.
    • (2005) Canadian Journal of Statistics , vol.33 , Issue.2
    • Dette, H.1    Haines, L.2    Imhof, L.3
  • 7
    • 0030350546 scopus 로고    scopus 로고
    • Optimal Bayesian designs for models with partially specified heteroscedastic structure
    • DETTE, H. AND WONG, W.K. (1996). Optimal Bayesian designs for models with partially specified heteroscedastic structure. Annals of Statistics, 24, No. 5, 2108-2127.
    • (1996) Annals of Statistics , vol.24 , Issue.5 , pp. 2108-2127
    • Dette, H.1    Wong, W.K.2
  • 8
    • 0042916303 scopus 로고    scopus 로고
    • A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression model
    • FANDOM NOUBIAP, R. AND SEIDEL, W. (2000). A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression model. Journal of Statistical Planning and Inference, 91, No. 1, 151-168.
    • (2000) Journal of Statistical Planning and Inference , vol.91 , Issue.1 , pp. 151-168
    • Fandom Noubiap, R.1    Seidel, W.2
  • 9
    • 0000251072 scopus 로고
    • The use of a canonical form in the construction of locally optimal designs for non-linear problems
    • FORD, I., TORSNEY, B. AND WU, C.F.J. (1992). The use of a canonical form in the construction of locally optimal designs for non-linear problems. Journal of the Royal Statistical Society, 54, 569-583.
    • (1992) Journal of the Royal Statistical Society , vol.54 , pp. 569-583
    • Ford, I.1    Torsney, B.2    Wu, C.F.J.3
  • 10
    • 0035618158 scopus 로고    scopus 로고
    • Maximin designs for exponential growth models and heteroscedastic polynomial models
    • IMHOF, L. (2001). Maximin designs for exponential growth models and heteroscedastic polynomial models. Annals of Statistics, 29, No. 2, 561-576.
    • (2001) Annals of Statistics , vol.29 , Issue.2 , pp. 561-576
    • Imhof, L.1
  • 11
    • 0041606555 scopus 로고
    • Optimal designs for the estimation of the logistic function
    • Department of Statistics, Pennsylvania State University
    • KALISH, L.A. AND ROSENBERGER, J.L. (1978). Optimal designs for the estimation of the logistic function. Technical Report 33, Department of Statistics, Pennsylvania State University.
    • (1978) Technical Report , vol.33
    • Kalish, L.A.1    Rosenberger, J.L.2
  • 13
    • 0010911410 scopus 로고
    • Maximin efficient designs for estimating nonlinear aspects in linear models
    • MÜLLER, C.H. (1995). Maximin efficient designs for estimating nonlinear aspects in linear models. Journal of Statistical Planning and Inference, 44, 117-132.
    • (1995) Journal of Statistical Planning and Inference , vol.44 , pp. 117-132
    • Müller, C.H.1
  • 15
    • 0027087158 scopus 로고
    • Robust designs for binary data
    • SITTER, R.R. (1992). Robust Designs for Binary Data. Biometrics, 48, 1145-1155.
    • (1992) Biometrics , vol.48 , pp. 1145-1155
    • Sitter, R.R.1
  • 16
    • 0031285454 scopus 로고    scopus 로고
    • Optimal designs for the logit and probit models for binary data
    • SITTER, R.R. AND FAINARU, I. (1997). Optimal designs for the logit and probit models for binary data. Canadian Journal of Statistics, 25, No. 2, 175-190.
    • (1997) Canadian Journal of Statistics , vol.25 , Issue.2 , pp. 175-190
    • Sitter, R.R.1    Fainaru, I.2
  • 17
    • 0001506741 scopus 로고
    • Optimal designs for binary response experiments: Fieller-, D- And A-criteria
    • SITTER, R.R. AND WU, C.F.J. (1993). Optimal designs for binary response experiments: Fieller-, D- and A-criteria. Scandinavian Journal of Statistics, 20, 329-341.
    • (1993) Scandinavian Journal of Statistics , vol.20 , pp. 329-341
    • Sitter, R.R.1    Wu, C.F.J.2
  • 18
    • 0002912952 scopus 로고
    • Optimal design for percentile estimation of a quantal response curve
    • Amsterdam: Elsevier (North Holland)
    • WU, C.F.J. (1988). Optimal design for percentile estimation of a quantal response curve. Optimal design and analysis of experiments. Amsterdam: Elsevier (North Holland).
    • (1988) Optimal Design and Analysis of Experiments
    • Wu, C.F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.