-
1
-
-
0029561598
-
The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isozymes to cancer chemoprevention
-
Hayes, J. D.; Pulford, D. J. The Glutathione S-transferase Supergene Family: Regulation of GST and the Contribution of the Isozymes to Cancer Chemoprevention. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445-600.
-
(1995)
Crit. Rev. Biochem. Mol. Biol.
, vol.30
, pp. 445-600
-
-
Hayes, J.D.1
Pulford, D.J.2
-
3
-
-
0023205811
-
The cell biology of multiple drug resistance
-
Beck, W. T. The Cell Biology of Multiple Drug Resistance. Biochem. Pharmacol. 1987, 36, 2879-2887.
-
(1987)
Biochem. Pharmacol.
, vol.36
, pp. 2879-2887
-
-
Beck, W.T.1
-
4
-
-
27144520048
-
Glutathione S-transferases and drug resistance
-
Edinburgh, Scotland, Aug 28-30, Taylor and Frances, London
-
Glutathione S-Transferases and Drug Resistance. In Proceedings of 3rd International GST Conference, Edinburgh, Scotland, Aug 28-30, 1989, Hayes, J. D.; Pickett, C. B.; Mantle, T. J., Eds., Taylor and Frances, London.
-
(1989)
Proceedings of 3rd International GST Conference
-
-
Hayes, J.D.1
Pickett, C.B.2
Mantle, T.J.3
-
5
-
-
0027095653
-
Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line
-
Cole, S. P.; Bhardwaj, G.; Gerlach, J. H.; Mackie, J. E.; Grant, C. E.; Almquist, K. C.; Stewart, A. J.; Kurtz, E. U.; Duncan, A. M. V.; Desley, R. G. Overexpression of a Transporter Gene in a Multidrug-resistant Human Lung Cancer Cell Line. Science (Wash DC) 1992 258, 1650-1654.
-
(1992)
Science (Wash DC)
, vol.258
, pp. 1650-1654
-
-
Cole, S.P.1
Bhardwaj, G.2
Gerlach, J.H.3
Mackie, J.E.4
Grant, C.E.5
Almquist, K.C.6
Stewart, A.J.7
Kurtz, E.U.8
Duncan, A.M.V.9
Desley, R.G.10
-
6
-
-
0028058166
-
Isozyme-specific glutathione-S-transferase inhibitors: Design and synthesis
-
Lyttle, M. H.; Hocker, M. D.; Hui, H. C.; Caldwell, C. G.; Aaron, D. T.; Engqvist-Goldstein, Å.; Flatgaard, J. E.; Bauer, K. E. Isozyme-specific Glutathione-S-transferase Inhibitors: Design and synthesis. J. Med Chem. 1994, 37, 189-194.
-
(1994)
J. Med Chem.
, vol.37
, pp. 189-194
-
-
Lyttle, M.H.1
Hocker, M.D.2
Hui, H.C.3
Caldwell, C.G.4
Aaron, D.T.5
Engqvist-Goldstein, Å.6
Flatgaard, J.E.7
Bauer, K.E.8
-
7
-
-
2542516257
-
Design, synthesis, and structure-activity relationships of haloenol lactones: Site-directed and isozyme selective glutathione S-transferase inhibitors
-
Wu, Z.; Minhas, G. S.; Wen, D.; Jiang, H.; Zimniak, C. K.; Zheng, J. Design, Synthesis, and Structure-activity Relationships of Haloenol Lactones: Site-directed and Isozyme Selective Glutathione S-transferase Inhibitors. J. Med. Chem. 2004, 47, 3282-3294.
-
(2004)
J. Med. Chem.
, vol.47
, pp. 3282-3294
-
-
Wu, Z.1
Minhas, G.S.2
Wen, D.3
Jiang, H.4
Zimniak, C.K.5
Zheng, J.6
-
8
-
-
0028356487
-
Glutathione-S-transferase activates novel alkylating agents
-
Lyttle, M. H.; Satyam, A.; Hocker, M. D.; Bauer, K. E.; Caldwell, C. G.; Hui, H. C.; Morgan, A. S.; Mergia, A.; Kauvar, L. M. Glutathione-S-transferase Activates Novel Alkylating Agents. J. Med Chem. 1994, 37, 1501-1507.
-
(1994)
J. Med Chem.
, vol.37
, pp. 1501-1507
-
-
Lyttle, M.H.1
Satyam, A.2
Hocker, M.D.3
Bauer, K.E.4
Caldwell, C.G.5
Hui, H.C.6
Morgan, A.S.7
Mergia, A.8
Kauvar, L.M.9
-
9
-
-
0029863194
-
Design, synthesis and evaluation of latent alkylating agents activated by glutathione-S-transferase
-
Satyam, A.; Hocker, M. D.; Kane-Maquire, K. A.; Morgan, A. S.; Villar, H. O.; Lyttle, M. H. Design, synthesis and evaluation of latent alkylating agents activated by glutathione-S-transferase. J. Med Chem. 1996, 39, 1736-1747.
-
(1996)
J. Med Chem.
, vol.39
, pp. 1736-1747
-
-
Satyam, A.1
Hocker, M.D.2
Kane-Maquire, K.A.3
Morgan, A.S.4
Villar, H.O.5
Lyttle, M.H.6
-
10
-
-
2142753987
-
Tumor cell responses to a novel glutathione S-transferase-activated nitric oxide-releasing prodrug
-
Findley, V. J.; Townsend, D. M.; Saavedra, J. E.; Buzard, G. S.; Citro, M. L.; Keefer, L. K.; Ji, X.; Tew, K. D. Tumor Cell Responses to a Novel Glutathione S-transferase-activated Nitric Oxide-releasing Prodrug. Mol. Pharm. 2004, 65, 1070-1079.
-
(2004)
Mol. Pharm.
, vol.65
, pp. 1070-1079
-
-
Findley, V.J.1
Townsend, D.M.2
Saavedra, J.E.3
Buzard, G.S.4
Citro, M.L.5
Keefer, L.K.6
Ji, X.7
Tew, K.D.8
-
11
-
-
0345098311
-
Mechanism of the glutathione transferase-catalyzed conversion of antitumor 2-crotonyloxymethyl-2-cycloalkenones to GSH adducts
-
Hamilton, D. S.; Zhang, X.; Ding, Z.; Hubatsch, I.; Mannervik, B.; Houk, K. N.; Ganem, B.; Creighton, D. J. Mechanism of the Glutathione Transferase-Catalyzed Conversion of Antitumor 2-Crotonyloxymethyl-2- cycloalkenones to GSH Adducts. J. Am. Chem. Soc. 2003, 125, 15049-15058.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 15049-15058
-
-
Hamilton, D.S.1
Zhang, X.2
Ding, Z.3
Hubatsch, I.4
Mannervik, B.5
Houk, K.N.6
Ganem, B.7
Creighton, D.J.8
-
12
-
-
0037018466
-
Glutathione S-transferase-catalyzed addition of glutathione to COMC: A new hypothesis for antitumor activity
-
Hamilton, D. S.; Ding, Z.; Ganem, B.; Creighton, D. J. Glutathione S-transferase-catalyzed Addition of Glutathione to COMC: A New Hypothesis for Antitumor Activity. Org. Lett. 2002, 4, 1209-1212.
-
(2002)
Org. Lett.
, vol.4
, pp. 1209-1212
-
-
Hamilton, D.S.1
Ding, Z.2
Ganem, B.3
Creighton, D.J.4
-
13
-
-
0037007714
-
Alkylation of nucleic acids by the antitumor agent COMC
-
Zhang, Q.; Ding, Z.; Creighton, D. J.; Ganem, B.; Fabris D. Alkylation of Nucleic Acids by the Antitumor Agent COMC. Org. Lett. 2002, 4, 1459-1462.
-
(2002)
Org. Lett.
, vol.4
, pp. 1459-1462
-
-
Zhang, Q.1
Ding, Z.2
Creighton, D.J.3
Ganem, B.4
Fabris, D.5
-
14
-
-
0016714601
-
A glyoxalase I inhibitor of a new structural type produced by Streptomyces
-
Takeuchi, T.; Chimura, H.; Hamada, M.; Umezawa, H.; Yoshka, H.; Oguchi, N.; Takahashi, Y.; Matsuda, A. A Glyoxalase I Inhibitor of a New Structural Type Produced by Streptomyces. J. Antibiot. 1975, 28, 737-742.
-
(1975)
J. Antibiot.
, vol.28
, pp. 737-742
-
-
Takeuchi, T.1
Chimura, H.2
Hamada, M.3
Umezawa, H.4
Yoshka, H.5
Oguchi, N.6
Takahashi, Y.7
Matsuda, A.8
-
15
-
-
0016819096
-
The structure of a glyoxalase I inhibitor and its chemical reactivity with SH compounds
-
Chimura, H.; Nakamura, H.; Takita, T.; Takeuchi, T.; Umezawa, M.; Kato, K.; Saito, S.; Tomisawa, T.; Iitaka, Y. The Structure of a Glyoxalase I Inhibitor and Its Chemical Reactivity with SH Compounds. J. Antibiot. 1975, 28, 743-748.
-
(1975)
J. Antibiot.
, vol.28
, pp. 743-748
-
-
Chimura, H.1
Nakamura, H.2
Takita, T.3
Takeuchi, T.4
Umezawa, M.5
Kato, K.6
Saito, S.7
Tomisawa, T.8
Iitaka, Y.9
-
16
-
-
0020468195
-
Mechanism of action of 2-crotonyloxymethyl-4,5,6-trihydroxycyclohex-2- enone, a SH-inhibitory antitumor antibiotic, and its effect on drug-resistant neoplastic cells
-
Sugimoto, Y.; Suzuki, H.; Yamaki, H.; Nishimura, T.; Tanaka, N. Mechanism of Action of 2-Crotonyloxymethyl-4,5,6-trihydroxycyclohex-2-enone, a SH-inhibitory Antitumor Antibiotic, and Its Effect on Drug-resistant Neoplastic Cells. J. Antibiot. 1982, 35, 1222-1230.
-
(1982)
J. Antibiot.
, vol.35
, pp. 1222-1230
-
-
Sugimoto, Y.1
Suzuki, H.2
Yamaki, H.3
Nishimura, T.4
Tanaka, N.5
-
17
-
-
0026541697
-
Synthesis and cytotoxicity of shikimate analogues. Structure: Activity based on 1-crotonyloxymethyl-3R,4R,5R-trihydroxycyclohex-2-enone
-
Aghil, O.; Bibby, M. C.; Carrington, S. J.; Double, J.; Douglas, K. T.; Phillips, R. M.; Shing, T. K. M. Synthesis and Cytotoxicity of Shikimate Analogues. Structure: activity Based on 1-Crotonyloxymethyl-3R,4R,5R- trihydroxycyclohex-2-enone. Anti-Cancer Drug Des. 1992, 7, 67-82.
-
(1992)
Anti-Cancer Drug Des.
, vol.7
, pp. 67-82
-
-
Aghil, O.1
Bibby, M.C.2
Carrington, S.J.3
Double, J.4
Douglas, K.T.5
Phillips, R.M.6
Shing, T.K.M.7
-
18
-
-
0037413532
-
Molecular basis of the antitumor activities of crotonyloxymethyl-2- cyclohexenones
-
Joseph, E.; Eiseman, J. L.; Hamilton, D. S.; Wang, H.; Tak, H.; Ganem, B.; Creighton, D. J. Molecular Basis of the Antitumor Activities of Crotonyloxymethyl-2-cyclohexenones. J. Med. Chem. 2003, 46, 194-196.
-
(2003)
J. Med. Chem.
, vol.46
, pp. 194-196
-
-
Joseph, E.1
Eiseman, J.L.2
Hamilton, D.S.3
Wang, H.4
Tak, H.5
Ganem, B.6
Creighton, D.J.7
-
20
-
-
0003083299
-
Metabolism and transport of glutathione and other y-glutamyl compounds
-
Larsson, et al., Eds.; Raven Press: New York
-
Meister, A. Metabolism and Transport of Glutathione and Other y-Glutamyl Compounds. In Functions of Glutathione: Biochemical, Physiological, Toxicological and Clinical Aspects; Larsson, et al., Eds.; Raven Press: New York, 1983; pp 1-22.
-
(1983)
Functions of Glutathione: Biochemical, Physiological, Toxicological and Clinical Aspects
, pp. 1-22
-
-
Meister, A.1
-
21
-
-
0032531814
-
Combined expression of Multidrug Resistance Protein (MRP) and Glutathione S-transferase pi-1 (GSTP1-1) in MCF7 cells and high level resistance to the cytotoxicities of ethacrynic acid but not oxazaphosphorines or cisplatin
-
Morrow, C. S.; Smitherman, P. K.; Townsend, A. J. Combined Expression of Multidrug Resistance Protein (MRP) and Glutathione S-transferase pi-1 (GSTP1-1) in MCF7 Cells and High Level Resistance to the Cytotoxicities of Ethacrynic Acid but not Oxazaphosphorines or Cisplatin. Biochem. Pharmacol. 1998, 56L, 1012-1022.
-
(1998)
Biochem. Pharmacol.
, vol.56 L
, pp. 1012-1022
-
-
Morrow, C.S.1
Smitherman, P.K.2
Townsend, A.J.3
-
22
-
-
27144513358
-
-
note
-
Approximately 40 μg of protein was loaded into each lane containing cell lines. Lane 1 contains the earliest passage in culture of the MCF-7/7pi stably transfected cell line (culture passage 2). Since the parental cell line, MCF-7/wt, grows more rapidly in culture, more cells were available from culture passage 2 for this cell line and the lysate from this cell line is presented in Lanes 2 and 3. Lane 4 is a later culture passage, passage 9, for the MCF-7/7pi to ensure that GST-pi is still expressed. Lane 5 is passage 11 for the parental line, MCF-7/wt, harvested on the same day as MCF-7/7pi passage 9. Lane 6 is the murine cell line, B16 melanoma, which has high concentrations of murine GST-pi. Lane 7 contains L1210 murine leukemia cells, which have low concentrations of murine GST-pi. Lane 8 contains the purified human GST-pi, which is the positive control. The later culture passages of MCF-7/7pi and MCF-7/wt were included to confirm that the expression of the stably transfected GST-pi does not change with passage. The murine cell lines were included to check for cross-reactivity of the antibodies and to confirm the concentrations of murine GST-pi in these cell lines. GAPDH, glyceraldehyde-3-phosphate dehydrogenase, served as the loading control for all cell lines. GAPDH is constitutively expressed in almost all tissues at high levels. Therefore, it is a useful marker when a loading/positive control is required in western blotting. The activity of GST-pi in each cell line was expressed as the ratio of GST-pi to GAPDH. Antihuman glutathione S-transferease P1-1 was obtained from Oxford Biomedical Research (antibody GS 72, Oxford, MI) and used at a dilution of 1/1000. Anti-GAPDH was obtained from Chemicom International (MAB374, Temecula, CA). Western blot method: Cell pellets were lysed in 10 vol of lysis buffer (50 mM Tris-HCl (pH 7.9) 100 mM NaCl, 1% NP-40m 2mM EDTA, 100mM NaF) containing fresh protein inhibitors (1 μg/mL pepstatin, 10 μg/mL aprotin, 5 μg/mL leupeptin, 5 mM PMSF, 0.1 μM microcystin, and 5 mM Na pyrophosphate). The tissue lysate was centrifuged at 13000g for 10 min. The supernatant was collected and protein concentration determined using a Bio-Rad protein assay system (Bio-Rad, Hercules, CA). Concentrations of bovine serum albumin between 0.05 and 0.5 mg/mL were used to obtain the calibration standard curve. Equal amounts of protein (40 μg) were denatured in 3X modified Laemmli sample buffer (Bio-Rad) and loaded on 4-15% gradient gels (Bio-Rad). The separated proteins were transferred to PVDF membranes and blotted with 5% nonfat milk in TBS for 1 h. The membranes were incubated with antibodies against GST-pi or GAPDH overnight. The immunoreactive signals were detected by ELC detection reagents (PerkinElmer Life Sciences, Boston, MA) following the manufacturer's instructions. The densities of the signals were quantified by densitometry with UN-SCAN-IT (Silk Scientific, Orem, UT).
-
-
-
|