메뉴 건너뛰기




Volumn 3614, Issue PART II, 2005, Pages 667-676

Prediction for silicon content in molten iron using a combined Fuzzy-Associative-Rules Bank

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA ACQUISITION; IRON; IRON AND STEEL INDUSTRY; LINGUISTICS; MOLTEN MATERIALS; ONLINE SYSTEMS; SILICON;

EID: 26944501208     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11540007_82     Document Type: Conference Paper
Times cited : (8)

References (15)
  • 2
    • 0035253981 scopus 로고    scopus 로고
    • A predictive system for blast furnaces by integrating a neural network with qualitative analysis
    • Chen, J.: A Predictive System for Blast Furnaces by Integrating a Neural Network with Qualitative Analysis. Engineering application of artificial intelligence, 14 (2001) 77-85
    • (2001) Engineering Application of Artificial Intelligence , vol.14 , pp. 77-85
    • Chen, J.1
  • 3
    • 12344337533 scopus 로고    scopus 로고
    • Modified chaotic adding weight one-rank local-region forecasting for silicon content in molten iron of blast furnace
    • Gao, C.H., Zhou, Z.M.: Modified Chaotic Adding Weight One-rank Local-region Forecasting for Silicon Content in Molten Iron of Blast Furnace. Acta Phys. Sin., 53 (2004) 4092-4096
    • (2004) Acta Phys. Sin. , vol.53 , pp. 4092-4096
    • Gao, C.H.1    Zhou, Z.M.2
  • 4
    • 18344376966 scopus 로고    scopus 로고
    • Chaotic local-region linear prediction of silicon content in hot metal of blast furnace
    • Gao, C.H., Zhou, Z.M., Shao, Z.J.: Chaotic Local-region Linear Prediction of Silicon Content in Hot Metal of Blast Furnace. Acta Metall. Sin. 41 (2005) 433-436
    • (2005) Acta Metall. Sin. , vol.41 , pp. 433-436
    • Gao, C.H.1    Zhou, Z.M.2    Shao, Z.J.3
  • 5
    • 0030394246 scopus 로고    scopus 로고
    • Artificial neural nets for prediction of silicon content of blast furnace hot metal
    • Singh, H., Sridhar, N.V., Deo, B.: Artificial Neural Nets for Prediction of Silicon Content of Blast Furnace Hot Metal. Steel Research, 67 (1996) 521-527
    • (1996) Steel Research , vol.67 , pp. 521-527
    • Singh, H.1    Sridhar, N.V.2    Deo, B.3
  • 6
    • 0034476022 scopus 로고    scopus 로고
    • An improved artificial neural network model for predicting silicon content of blast furnace hot metal
    • Yao, B., Yang, T. J., Ning, X.J.: An Improved Artificial Neural Network Model for Predicting Silicon Content of Blast Furnace Hot Metal. Journal of University of Science and Technology Beijing, 7(2000) 269-272
    • (2000) Journal of University of Science and Technology Beijing , vol.7 , pp. 269-272
    • Yao, B.1    Yang, T.J.2    Ning, X.J.3
  • 7
    • 0346057281 scopus 로고    scopus 로고
    • Time series analysis and prediction on complex dynamical behavior observed in a blast furnace
    • Miyano, T., Kimoto, S., Shibuta, H. et. al.: Time Series Analysis and Prediction on Complex Dynamical Behavior Observed in a Blast Furnace. Physica D, 135 (2000) 305-330
    • (2000) Physica D , vol.135 , pp. 305-330
    • Miyano, T.1    Kimoto, S.2    Shibuta, H.3
  • 8
    • 0036285868 scopus 로고    scopus 로고
    • Three-dimensional multiphase mathematical modeling of the blast furnace based on the multifluid model
    • Jose, A.C., Hiroshi, N., Jun-ichiro, Y.: Three-dimensional Multiphase Mathematical Modeling of the Blast Furnace Based on the Multifluid Model. ISIJ International, 42 (2002) 44-52
    • (2002) ISIJ International , vol.42 , pp. 44-52
    • Jose, A.C.1    Hiroshi, N.2    Jun-Ichiro, Y.3
  • 9
    • 2442435706 scopus 로고    scopus 로고
    • Blast furnace hot metal temperature prediction through neural networks-based models
    • Juan, J., Javier, M., Jesus, S.A., et. al.: Blast Furnace Hot Metal Temperature Prediction Through Neural Networks-based Models. ISIJ International, 44 (2004) 573-580
    • (2004) ISIJ International , vol.44 , pp. 573-580
    • Juan, J.1    Javier, M.2    Jesus, S.A.3
  • 11
    • 0026994365 scopus 로고
    • Fuzzy systems are universal approximators
    • San Diego, CA, USA
    • Wang, L.X.: Fuzzy Systems are Universal Approximators. Proc. IEEE Int. Conf. Fuzzy Systems, San Diego, CA, USA, (1992) 1163-1170
    • (1992) Proc. IEEE Int. Conf. Fuzzy Systems , pp. 1163-1170
    • Wang, L.X.1
  • 14
    • 0025404409 scopus 로고
    • Fuzzy logic in control systems, fuzzy logic controller, part I
    • Lee, C.C.: Fuzzy Logic in Control Systems, Fuzzy Logic Controller, Part I. IEEE Trans. on SYST., Man, and Cybern., SMC-20 (2) (1990) 404-418
    • (1990) IEEE Trans. on SYST., Man, and Cybern. , vol.SMC-20 , Issue.2 , pp. 404-418
    • Lee, C.C.1
  • 15
    • 0028495775 scopus 로고
    • A supervisory controller for fuzzy control systems that guarantees stability
    • Wang, L.X.: A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability. IEEE Trans. On Automatic Control, 39 (1994) 1845-1848
    • (1994) IEEE Trans. on Automatic Control , vol.39 , pp. 1845-1848
    • Wang, L.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.