-
1
-
-
0003645482
-
Nonlinear signal processing using neural networks: Prediction and system modeling
-
Los Alamos National Laboratory
-
A.S. Lapedes, R. Farber, Nonlinear signal processing using neural networks: prediction and system modeling, Technical Report LA-UR-87-2662 (1987), Los Alamos National Laboratory.
-
(1987)
Technical Report LA-UR-87-2662
-
-
Lapedes, A.S.1
Farber, R.2
-
2
-
-
45149144372
-
Nonlinear prediction of chaotic time series
-
M. Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (1989) 335.
-
(1989)
Physica D
, vol.35
, pp. 335
-
-
Casdagli, M.1
-
3
-
-
33646981873
-
Measuring the strangeness of strange attractor
-
P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractor, Phys. Rev. Lett. 31 (1983) 346.
-
(1983)
Phys. Rev. Lett.
, vol.31
, pp. 346
-
-
Grassberger, P.1
Procaccia, I.2
-
4
-
-
0001285133
-
Deterministic chaos; the science and the fiction
-
D. Ruelle, Deterministic chaos; the science and the fiction, Proc. Roy. Soc. London A 427 (1990) 241.
-
(1990)
Proc. Roy. Soc. London A
, vol.427
, pp. 241
-
-
Ruelle, D.1
-
5
-
-
5544310124
-
A search for chaotic behavior in large and mesoscale motions in the pacific ocean
-
A.R. Osborne, A. Provenzale, A search for chaotic behavior in large and mesoscale motions in the pacific ocean, Physica D 35 (1989) 357.
-
(1989)
Physica D
, vol.35
, pp. 357
-
-
Osborne, A.R.1
Provenzale, A.2
-
7
-
-
0025199496
-
Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
-
G. Sugihara, R.M. May, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature 344 (1990) 734.
-
(1990)
Nature
, vol.344
, pp. 734
-
-
Sugihara, G.1
May, R.M.2
-
8
-
-
0040080203
-
Nonlinear prediction as a way of distinguishing chaos from random fractal sequences
-
A.A. Tsonis, J.B. Elsner, Nonlinear prediction as a way of distinguishing chaos from random fractal sequences, Nature 358 (1992) 217.
-
(1992)
Nature
, vol.358
, pp. 217
-
-
Tsonis, A.A.1
Elsner, J.B.2
-
9
-
-
0030295537
-
Time series analysis of complex dynamical behavior contaminated with observational noise
-
T. Miyano, Time series analysis of complex dynamical behavior contaminated with observational noise, Int. J. Bifur. Chaos 6 (1996) 2031.
-
(1996)
Int. J. Bifur. Chaos
, vol.6
, pp. 2031
-
-
Miyano, T.1
-
10
-
-
0001594590
-
Coarse-grained embeddings of time series: Random walks, Gaussian random processes, and deterministic chaos
-
D.T. Kaplan, L. Glass, Coarse-grained embeddings of time series: random walks, Gaussian random processes, and deterministic chaos, Physica D 64 (1993) 431.
-
(1993)
Physica D
, vol.64
, pp. 431
-
-
Kaplan, D.T.1
Glass, L.2
-
11
-
-
0000305550
-
Recognizing determinism in a time series
-
R. Wayland, D. Bromley, D. Pickett, A. Passamante, Recognizing determinism in a time series, Phys. Rev. Lett. 70 (1993) 580.
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 580
-
-
Wayland, R.1
Bromley, D.2
Pickett, D.3
Passamante, A.4
-
12
-
-
0009113291
-
On Stochastic Difference Equations for the Multi-Dimensional Weakly Stationary Time Series
-
Academic Press, New York
-
Y. Okabe, On Stochastic Difference Equations for the Multi-Dimensional Weakly Stationary Time Series, Prospect of Algebraic Analysis, Academic Press, New York, 1988, p. 601.
-
(1988)
Prospect of Algebraic Analysis
, pp. 601
-
-
Okabe, Y.1
-
13
-
-
84972546612
-
2O-Langevin equations to the linear prediction problem for the multi-dimensional weakly stationary time series
-
2O-Langevin equations to the linear prediction problem for the multi-dimensional weakly stationary time series, J. Math. Soc. Jpn. 45 (1993) 277.
-
(1993)
J. Math. Soc. Jpn.
, vol.45
, pp. 277
-
-
Okabe, Y.1
-
14
-
-
84972491110
-
2O-Langevin equations
-
2O-Langevin equations, Hokkaido Math. J. 22 (1993) 199.
-
(1993)
Hokkaido Math. J.
, vol.22
, pp. 199
-
-
Okabe, Y.1
-
15
-
-
0002631377
-
2O-Langevin equations and its applications to data analysis (I): Stationary analysis
-
2O-Langevin equations and its applications to data analysis (I): Stationary analysis, Hokkaido Math. J. 20 (1991) 45.
-
(1991)
Hokkaido Math. J.
, vol.20
, pp. 45
-
-
Okabe, Y.1
Nakano, Y.2
-
16
-
-
0003142169
-
2O-Langevin equations and its applications to data analysis (II): Causal analysis
-
2O-Langevin equations and its applications to data analysis (II): causal analysis, Nagoya Math. J. 134 (1994) 1.
-
(1994)
Nagoya Math. J.
, vol.134
, pp. 1
-
-
Okabe, Y.1
Inoue, A.2
-
17
-
-
84972567738
-
2O-Langevin equations and its applications to the nonlinear prediction problem for the one-dimensional strictly stationary time series
-
2O-Langevin equations and its applications to the nonlinear prediction problem for the one-dimensional strictly stationary time series, J. Math. Soc. Jpn. 47 (1995) 349.
-
(1995)
J. Math. Soc. Jpn.
, vol.47
, pp. 349
-
-
Okabe, Y.1
Ootsuka, T.2
-
18
-
-
0346585922
-
Deterministic Chaos and its Stationary Analysis
-
M. Yamaguti (Ed.), Elsevier, Amsterdam
-
S. Kimoto, T. Ikeguchi, T. Matozaki, K. Aihara, In: M. Yamaguti (Ed.), Deterministic Chaos and its Stationary Analysis, Towards the Harnessing of Chaos, Elsevier, Amsterdam, 1994, p. 373.
-
(1994)
Towards the Harnessing of Chaos
, pp. 373
-
-
Kimoto, S.1
Ikeguchi, T.2
Matozaki, T.3
Aihara, K.4
-
19
-
-
0141896903
-
Nonlinear modeling of chaotic time series; theory and applications
-
Los Alamos National Laboratory
-
M. Casdagli, D. des Jardins, S. Eubank, J.D. Farmer, J. Gibson, N. Hunter, J. Theiler, Nonlinear modeling of chaotic time series; theory and applications, Technical Report LA-UR-91-1637, Los Alamos National Laboratory, 1991.
-
(1991)
Technical Report LA-UR-91-1637
-
-
Casdagli, M.1
Des Jardins, D.2
Eubank, S.3
Farmer, J.D.4
Gibson, J.5
Hunter, N.6
Theiler, J.7
-
20
-
-
0347846010
-
Statistical Analysis and Control for a Dynamical System
-
in Japanese
-
H. Akaike, T. Nakagawa, Statistical Analysis and Control for a Dynamical System, Science Company, 1973, in Japanese.
-
(1973)
Science Company
-
-
Akaike, H.1
Nakagawa, T.2
-
21
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio, F. Girosi, Networks for approximation and learning, Proc. IEEE 78 (1990) 1481.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1481
-
-
Poggio, T.1
Girosi, F.2
-
22
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, T. Poggio, Regularization theory and neural networks architectures, Neural Computation 7 (1995) 219.
-
(1995)
Neural Computation
, vol.7
, pp. 219
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
23
-
-
0003241883
-
Spline Models for Observational Data
-
SIAM, Philadelphia
-
G. Wahba, Spline Models for Observational Data, Series in Applied Mathematics, vol. 59, SIAM, Philadelphia, 1990.
-
(1990)
Series in Applied Mathematics
, vol.59
-
-
Wahba, G.1
-
25
-
-
0345474979
-
Characterization of complexities in Czochralski crystal growth by nonlinear forecasting
-
T. Miyano, H. Morita, A. Shintani, T. Kanda, M. Hourai, Characterization of complexities in Czochralski crystal growth by nonlinear forecasting, J. Appl. Phys. 76 (1994) 2681.
-
(1994)
J. Appl. Phys.
, vol.76
, pp. 2681
-
-
Miyano, T.1
Morita, H.2
Shintani, A.3
Kanda, T.4
Hourai, M.5
-
27
-
-
0347846009
-
-
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, A. I. Memo
-
P. Niyogi, F. Girosi, On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, A. I. Memo, No. 1467 (1994).
-
(1994)
On the Relationship between Generalization Error, Hypothesis Complexity, and Sample Complexity for Radial Basis Functions
, vol.1467
-
-
Niyogi, P.1
Girosi, F.2
|