메뉴 건너뛰기




Volumn 3559 LNAI, Issue , 2005, Pages 264-278

A new perspective on an old perceptron algorithm

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 26944490691     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11503415_18     Document Type: Conference Paper
Times cited : (30)

References (19)
  • 1
    • 0000026159 scopus 로고
    • The relaxation method for linear inequalities
    • S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6(3):382-392, 1954.
    • (1954) Canadian Journal of Mathematics , vol.6 , Issue.3 , pp. 382-392
    • Agmon, S.1
  • 3
    • 0000430986 scopus 로고
    • The perception: A model for brain functioning
    • H. D. Block. The perception: A model for brain functioning. Reviews of Modem Physics, 34:123-135, 1962.
    • (1962) Reviews of Modem Physics , vol.34 , pp. 123-135
    • Block, H.D.1
  • 5
    • 26844495299 scopus 로고    scopus 로고
    • Smoothed analysis of the perceptron algorithm for linear programming
    • A. Blum and J.D. Dunagan. Smoothed analysis of the perceptron algorithm for linear programming. In SODA, 2002.
    • (2002) SODA
    • Blum, A.1    Dunagan, J.D.2
  • 8
    • 0141496132 scopus 로고    scopus 로고
    • Ultraconservative online algorithms for multiclass problems
    • K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Jornal of Machine Learning Research, 3:951-991, 2003.
    • (2003) Jornal of Machine Learning Research , vol.3 , pp. 951-991
    • Crammer, K.1    Singer, Y.2
  • 9
    • 0029521676 scopus 로고
    • Sample compression, learnability, and the Vapnik-Chervonenkis dimension
    • S. Floyd and M. Warmuth. Sample compression, learnability, and the Vapnik-Chervonenkis dimension. Machine Learning, 21(3):269-304, 1995.
    • (1995) Machine Learning , vol.21 , Issue.3 , pp. 269-304
    • Floyd, S.1    Warmuth, M.2
  • 10
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277-296, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 11
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine Learning Research, 2:213-242, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 213-242
    • Gentile, C.1
  • 13
    • 0036161258 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm
    • Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine Learning, 46(1-3):361-387, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 361-387
    • Li, Y.1    Long, P.M.2
  • 16
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-407, 1958.
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 17
    • 0004159672 scopus 로고    scopus 로고
    • MIT Press
    • (Reprinted in Neurocomputing (MIT Press, 1988).).
    • (1988) Neurocomputing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.