메뉴 건너뛰기




Volumn 3614, Issue PART II, 2005, Pages 1245-1254

Probabilistic based recursive model for face recognition

Author keywords

[No Author keywords available]

Indexed keywords

ESTIMATION; LEARNING ALGORITHMS; MATHEMATICAL MODELS; NEURAL NETWORKS; TREES (MATHEMATICS);

EID: 26944466119     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (22)
  • 1
    • 0032165969 scopus 로고    scopus 로고
    • A general framework for adaptive processing of data structures
    • P. Frasconi, M. Gori, and A. Sperduti, A General Framework for Adaptive Processing of Data Structures, IEEE Trans. Neural Networks, vol. 9, pp. 768-785, 1998.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 768-785
    • Frasconi, P.1    Gori, M.2    Sperduti, A.3
  • 3
    • 0031185845 scopus 로고    scopus 로고
    • EigenFaces vs. FisherFaces: Recognition using class specific linear projection
    • P.N. Belhumeur, et. al., EigenFaces vs. FisherFaces: Recognition Using Class Specific Linear Projection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 19(7), pp. 711-20, 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.N.1
  • 4
    • 0027558293 scopus 로고
    • Distortion invariant object recognition in the dynamic link architecture
    • Martin Lades, et al., Distortion Invariant Object Recognition in the Dynamic Link Architecture, IEEE Transactions on Computers, vol. 42(2), pp. 300-311, 1993.
    • (1993) IEEE Transactions on Computers , vol.42 , Issue.2 , pp. 300-311
    • Lades, M.1
  • 5
    • 0000209334 scopus 로고    scopus 로고
    • Local feature analysis: A general statistical theory for object representation
    • P. S. Penev and Joseph J. Atick, Local Feature Analysis: A general statistical theory for object representation, Network: Computation in Neural Systems, (7), pp. 477-500, 1996.
    • (1996) Network: Computation in Neural Systems , Issue.7 , pp. 477-500
    • Penev, P.S.1    Atick, J.J.2
  • 7
    • 0041523978 scopus 로고    scopus 로고
    • Independent component analysis of gabor features for face recognition
    • C. Liu and Harry Wechsler, Independent Component Analysis of Gabor Features for Face Recognition, IEEE Transactions on neural networks, vol. 14(4), pp. 919-928, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.4 , pp. 919-928
    • Liu, C.1    Wechsler, H.2
  • 10
    • 0031145983 scopus 로고    scopus 로고
    • Supervised neural networks for classification of structures
    • A. Sperduti and A. Starita, Supervised neural networks for classification of structures, IEEE Trans. Neural Networks, vol. 8, pp. 714-735, 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 714-735
    • Sperduti, A.1    Starita, A.2
  • 11
    • 0037844902 scopus 로고    scopus 로고
    • A self-organizing map for adaptive processing of structured data
    • Martin T. Hagan and A. C. Tsoi, A Self-Organizing Map for Adaptive Processing of Structured Data, IEEE Trans. Neural Networks, vol. 14(3), pp. 491-505, 2003.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.3 , pp. 491-505
    • Hagan, M.T.1    Tsoi, A.C.2
  • 13
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • ed. B. Scholkopf, C. Burges, and A. Smola: MIT Press
    • J. Platt, Fast Training of Support Vector Machines using Sequential Minimal Optimization., Advances in Kernel Methods - Support Vector Learning, ed. B. Scholkopf, C. Burges, and A. Smola: MIT Press, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.1
  • 14
    • 0025725905 scopus 로고    scopus 로고
    • Instance-based learning algorithms
    • D. Aha and D. Kibler, Instance-based learning algorithms, Mach. Learn., 6, pp37-66, 91.
    • Mach. Learn. , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 17
    • 0022098435 scopus 로고    scopus 로고
    • Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional cortical filters
    • J.G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional cortical filters, J. OptSoc. Amer.,2(7), 1160-67, 85.
    • J. OptSoc. Amer. , vol.2 , Issue.7 , pp. 1160-1167
    • Daugman, J.G.1
  • 19
    • 0042525850 scopus 로고    scopus 로고
    • An improved algorithm for learning long-term dependency problems in adaptive processing of data structures
    • Siu-Yeung Cho, et al., An Improved Algorithm for learning long-term dependency problems in adaptive processing of data structures, IEEE Trans. on NN, 14(4), pp. 781-93.
    • IEEE Trans. on NN , vol.14 , Issue.4 , pp. 781-793
    • Cho, S.-Y.1
  • 20
    • 0028497290 scopus 로고
    • Maximum likelihood training of probabilistic neural networks
    • D. F. Streit and T. E. Luginhuhl, Maximum likelihood training of probabilistic neural networks, IEEE Trans. on Neural Networks, vol. 5(5), pp. 764-783, 1994.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.5 , pp. 764-783
    • Streit, D.F.1    Luginhuhl, T.E.2
  • 21
    • 0001614845 scopus 로고
    • A probabilistic resource allocating network for novelty detection
    • S. Roberts and L. Tarassenko, A probabilistic resource allocating network for novelty detection, Neural Computation, vol. 6, pp. 270-284, 1994.
    • (1994) Neural Computation , vol.6 , pp. 270-284
    • Roberts, S.1    Tarassenko, L.2
  • 22
    • 0028543366 scopus 로고
    • Training feedforward networks with Marquardt algorithm
    • Martin T. Hagan and Mohammad B. Menhaj, Training feedforward networks with Marquardt algorithm, IEEE Trans. on Neural Networks, vol. 5(6), pp. 989-993, 1994.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.