메뉴 건너뛰기




Volumn 18, Issue 8, 2005, Pages 1051-1063

Recursive principal components analysis

Author keywords

Logical stack; Recurrent neural network; Recursive PCA; Time series; Unsupervised learning

Indexed keywords

CONSTRAINT THEORY; LEARNING SYSTEMS; PRINCIPAL COMPONENT ANALYSIS; STATISTICS; TIME SERIES ANALYSIS;

EID: 26944437873     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2005.07.005     Document Type: Article
Times cited : (16)

References (21)
  • 1
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi, and K. Hornik Neural networks and principal component analysis: Learning from examples without local minima Neural Networks 2 1 1988 53 58
    • (1988) Neural Networks , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi Learning long-term dependencies with gradient descent is difficult IEEE Transactions on Neural Networks 5 2 1994 157 166
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cognitive Science 14 1990 179 211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 6
    • 0028496407 scopus 로고
    • Computability with lowdimensional dynamical systems
    • P. Koiran, M. Cosnard, and M. Garzon Computability with lowdimensional dynamical systems Theoretical Computer Science 132 12 1994 113 128
    • (1994) Theoretical Computer Science , vol.132 , Issue.12 , pp. 113-128
    • Koiran, P.1    Cosnard, M.2    Garzon, M.3
  • 7
    • 4344610274 scopus 로고    scopus 로고
    • Temporal integration in recurrent microcircuits
    • M.A. Arbib 2nd ed. MIT Press Cambridge, MA
    • W. Maass, and H. Markram Temporal integration in recurrent microcircuits M.A. Arbib The handbook of brain theory and neural networks 2nd ed. 2003 MIT Press Cambridge, MA 1159 1163
    • (2003) The Handbook of Brain Theory and Neural Networks , pp. 1159-1163
    • Maass, W.1    Markram, H.2
  • 8
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • W. Maass, T. Natschlger, and H. Markram Real-time computing without stable states: A new framework for neural computation based on perturbations Neural Computation 14 11 2002 2531 2560
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlger, T.2    Markram, H.3
  • 9
    • 0017714604 scopus 로고
    • Oscillations and chaos in physiological control systems
    • M.C. Mackey, and L. Glass Oscillations and chaos in physiological control systems Science 197 1977 287 289
    • (1977) Science , vol.197 , pp. 287-289
    • MacKey, M.C.1    Glass, L.2
  • 10
    • 0029690502 scopus 로고    scopus 로고
    • Subsymbolic case-role analysis of sentences with embedded clauses
    • R. Miikkulainen Subsymbolic case-role analysis of sentences with embedded clauses Cognitive Science 20 1996 47 73
    • (1996) Cognitive Science , vol.20 , pp. 47-73
    • Miikkulainen, R.1
  • 11
    • 0001822323 scopus 로고    scopus 로고
    • Dynamical recognizers: Real-time language recognition by analog computers
    • C. Moore Dynamical recognizers: real-time language recognition by analog computers Theoretical Computer Science 201 1-2 1998 99 136
    • (1998) Theoretical Computer Science , vol.201 , Issue.1-2 , pp. 99-136
    • Moore, C.1
  • 12
    • 0027148066 scopus 로고    scopus 로고
    • Associative memory with nonmonotone dynamics
    • M. Morita Associative memory with nonmonotone dynamics Neural Networks 6 1996 115 126
    • (1996) Neural Networks , vol.6 , pp. 115-126
    • Morita, M.1
  • 13
    • 0002399288 scopus 로고
    • Neural networks, principal components and subspaces
    • E. Oja Neural networks, principal components and subspaces International Journal of Neural Systems 1 1 1989 61 68
    • (1989) International Journal of Neural Systems , vol.1 , Issue.1 , pp. 61-68
    • Oja, E.1
  • 14
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • J.B. Pollack Recursive distributed representations Artificial Intelligence 46 1990 77 105
    • (1990) Artificial Intelligence , vol.46 , pp. 77-105
    • Pollack, J.B.1
  • 17
    • 22044454971 scopus 로고    scopus 로고
    • The neural network pushdown automaton: Architecture, dynamics and training
    • G.-Z. Sun, C.L. Giles, and H.H. Chen The neural network pushdown automaton: Architecture, dynamics and training Summer school on neural networks 1997 pp. 296-345
    • (1997) Summer School on Neural Networks
    • Sun, G.-Z.1    Giles, C.L.2    Chen, H.H.3
  • 18
    • 0004057132 scopus 로고    scopus 로고
    • Learning principal components in a contextual space
    • M. Verleysen D Facto Bruxelles
    • T. Voegtlin Learning principal components in a contextual space M. Verleysen Proceedings of ESANN'2000 2000 D Facto Bruxelles 359 364
    • (2000) Proceedings of ESANN'2000 , pp. 359-364
    • Voegtlin, T.1
  • 19
    • 24344475324 scopus 로고    scopus 로고
    • Linear recursive distributed representations
    • (in press).
    • Voegtlin, T., Dominey, P. F. (2005). Linear recursive distributed representations. Neural Networks (in press).
    • (2005) Neural Networks
    • Voegtlin, T.1    Dominey, P.F.2
  • 21
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. Williams, and D. Zipser A learning algorithm for continually running fully recurrent neural networks Neural Computation 1 1 1989 270 280
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.