-
1
-
-
0000670023
-
On the law of the iterated logarithm for Gaussian processes and their compositions
-
Arcones, M. A. (1995). On the law of the iterated logarithm for Gaussian processes and their compositions. J. Theoret. Prob. 8, 877-903.
-
(1995)
J. Theoret. Prob.
, vol.8
, pp. 877-903
-
-
Arcones, M.A.1
-
3
-
-
0009155405
-
Brownian local time
-
N.S.
-
Borodin, A. N. (1989). Brownian local time (in Russian). Uspehi Mat. Nauk (N.S.) 44, (2)(266), 7-48.
-
(1989)
Uspehi Mat. Nauk
, vol.44
, Issue.2-266
, pp. 7-48
-
-
Borodin, A.N.1
-
4
-
-
27544485750
-
-
English translation
-
English translation: Russian Math. Surveys 44, 2, 1-51.
-
Russian Math. Surveys
, vol.44
, Issue.2
, pp. 1-51
-
-
-
5
-
-
0002163527
-
Some path properties of iterated Brownian motion
-
Çinlar, E., Chung, K. L., and Sharpe, M. (eds.), Birkhäuser, Boston
-
Burdzy, K. (1993). Some path properties of iterated Brownian motion. In Çinlar, E., Chung, K. L., and Sharpe, M. (eds.), Seminar on Stochastic Processes 1992, Birkhäuser, Boston, pp. 67-87.
-
(1993)
Seminar on Stochastic Processes 1992
, pp. 67-87
-
-
Burdzy, K.1
-
6
-
-
0002622087
-
Variation of iterated Brownian motion. Workshop and Conference on Measure-valued Processes, Stochastic Partial Differential Equations and Interacting Systems
-
Dawson, D. A. (ed.)
-
Burdzy, K. (1994). Variation of iterated Brownian motion. Workshop and Conference on Measure-valued Processes, Stochastic Partial Differential Equations and Interacting Systems. In Dawson, D. A. (ed.), CRM Proceedings and Lecture Notes 5, pp. 35-53.
-
(1994)
CRM Proceedings and Lecture Notes 5
, pp. 35-53
-
-
Burdzy, K.1
-
8
-
-
0002580581
-
How big are the increments of the local time of a Wiener process?
-
Csáki, E., Csörgo, M., Földes, A., and Révész, P. (1983). How big are the increments of the local time of a Wiener process? Ann. Prob. 11, 593-608.
-
(1983)
Ann. Prob.
, vol.11
, pp. 593-608
-
-
Csáki, E.1
Csörgo, M.2
Földes, A.3
Révész, P.4
-
9
-
-
0001694047
-
Brownian local time approximated by a Wiener sheet
-
Csáki, E., Csörgo, M., Földes, A., and Révész, P. (1989). Brownian local time approximated by a Wiener sheet. Ann. Prob. 17, 516-537.
-
(1989)
Ann. Prob.
, vol.17
, pp. 516-537
-
-
Csáki, E.1
Csörgo, M.2
Földes, A.3
Révész, P.4
-
10
-
-
0001267930
-
Strong approximation of additive functionals
-
Csáki, E., Csörgo, M., Földes, Á., and Révész, P. (1992). Strong approximation of additive functionals. J. Theoret. Prob. 5, 679-706.
-
(1992)
J. Theoret. Prob.
, vol.5
, pp. 679-706
-
-
Csáki, E.1
Csörgo, M.2
Földes, Á.3
Révész, P.4
-
11
-
-
0001676340
-
Global Strassen-type theorems for iterated Brownian motions
-
Csáki, E., Csörgo, M., Földes, A., and Révész, P. (1995). Global Strassen-type theorems for iterated Brownian motions. Stoch. Proc. Appl. 59, 321-341.
-
(1995)
Stoch. Proc. Appl.
, vol.59
, pp. 321-341
-
-
Csáki, E.1
Csörgo, M.2
Földes, A.3
Révész, P.4
-
12
-
-
0042907536
-
How small are the increments of the local time of a Wiener process?
-
Csáki, E., and Földes, A. (1986). How small are the increments of the local time of a Wiener process? Ann. Prob. 14, 533-546.
-
(1986)
Ann. Prob.
, vol.14
, pp. 533-546
-
-
Csáki, E.1
Földes, A.2
-
13
-
-
0742318696
-
A note on the stability of the local time of a Wiener process
-
Csáki, E., and Földes, A. (1987). A note on the stability of the local time of a Wiener process. Stoch. Proc. Appl. 25, 203-213.
-
(1987)
Stoch. Proc. Appl.
, vol.25
, pp. 203-213
-
-
Csáki, E.1
Földes, A.2
-
14
-
-
24144450571
-
How to investigate the iterated Brownian motion by Strassen's method?
-
Carleton University, University of Ottawa
-
Csörgo, M., Földes, A., and Révész, P. (1993). How to investigate the iterated Brownian motion by Strassen's method? Technical Report Service Laboratory Research Statistical Probability No. 236-1993, Carleton University, University of Ottawa.
-
(1993)
Technical Report Service Laboratory Research Statistical Probability No. 236-1993
-
-
Csörgo, M.1
Földes, A.2
Révész, P.3
-
15
-
-
0002346840
-
A functional LIL approach to pointwise Bahadur-Kiefer theorems
-
Dudley, R. M., Hahn, M. G., and Kuelbs, J. (eds.), Birkhäuser, Boston
-
Deheuvels, P., and Mason, D. M. (1992). A functional LIL approach to pointwise Bahadur-Kiefer theorems. In Dudley, R. M., Hahn, M. G., and Kuelbs, J. (eds.), Probability in Banach Spaces 8, Birkhäuser, Boston, pp. 255-266.
-
(1992)
Probability in Banach Spaces 8
, pp. 255-266
-
-
Deheuvels, P.1
Mason, D.M.2
-
16
-
-
0040356922
-
Two limit theorems for the simplest random walk on a line
-
N.S.
-
Dobrushin, R. L. (1955). Two limit theorems for the simplest random walk on a line (in Russian). Uspehi Mat. Nauk (N.S.) 10, (3)(65), 139-146.
-
(1955)
Uspehi Mat. Nauk
, vol.10
, Issue.3-65
, pp. 139-146
-
-
Dobrushin, R.L.1
-
17
-
-
0001601561
-
Probabilistic construction of the solution of some higher order parabolic differential equations
-
Funaki, T. (1979). Probabilistic construction of the solution of some higher order parabolic differential equations. Proc. Japan Acad. 55, 176-179.
-
(1979)
Proc. Japan Acad.
, vol.55
, pp. 176-179
-
-
Funaki, T.1
-
18
-
-
0000246731
-
Laws of the iterated logarithm for iterated Wiener processes
-
Hu, Y., Pierre-Loti-Viaud, D., and Shi, Z. (1995). Laws of the iterated logarithm for iterated Wiener processes. J. Theoret. Prob. 8, 303-319.
-
(1995)
J. Theoret. Prob.
, vol.8
, pp. 303-319
-
-
Hu, Y.1
Pierre-Loti-Viaud, D.2
Shi, Z.3
-
19
-
-
0000613453
-
The Csörgo-Révész modulus of non-differentiability of iterated Brownian motion
-
Hu, Y., and Shi, Z. (1995). The Csörgo-Révész modulus of non-differentiability of iterated Brownian motion. Stoch. Proc. Appl. 58, 267-279.
-
(1995)
Stoch. Proc. Appl.
, vol.58
, pp. 267-279
-
-
Hu, Y.1
Shi, Z.2
-
20
-
-
84972521506
-
An iterated logarithm law for local time
-
Kesten, H. (1965). An iterated logarithm law for local time. Duke Math. J. 32, 447-456.
-
(1965)
Duke Math. J.
, vol.32
, pp. 447-456
-
-
Kesten, H.1
-
21
-
-
85044492019
-
A uniform modulus result for iterated Brownian motion
-
Khoshnevisan, D., and Lewis, T. M. (1996). A uniform modulus result for iterated Brownian motion. J. Theoret. Prob.
-
(1996)
J. Theoret. Prob.
-
-
Khoshnevisan, D.1
Lewis, T.M.2
-
22
-
-
0347061075
-
Chung's law of the iterated logarithm for iterated Brownian motion
-
Khoshnevisan, D., and Lewis, T. M. (1996). Chung's law of the iterated logarithm for iterated Brownian motion. Ann. Inst. H. Poincaré.
-
(1996)
Ann. Inst. H. Poincaré.
-
-
Khoshnevisan, D.1
Lewis, T.M.2
-
23
-
-
0001152423
-
On Bahadur's representation of sample quantiles
-
Kiefer, A. (1967). On Bahadur's representation of sample quantiles. Ann. Math. Statist. 38, 1323-1342.
-
(1967)
Ann. Math. Statist.
, vol.38
, pp. 1323-1342
-
-
Kiefer, A.1
-
26
-
-
84966248148
-
On the iterated logarithm law for local time
-
Perkins, E. (1981a). On the iterated logarithm law for local time. Proc. Amer. Math. Soc. 81, 470-472.
-
(1981)
Proc. Amer. Math. Soc.
, vol.81
, pp. 470-472
-
-
Perkins, E.1
-
27
-
-
0005410024
-
The exact Hausdorff measure of the level sets of Brownian motion
-
Perkins, E. (1981b). The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrsch. verw. Gebiete 58, 373-388.
-
(1981)
Z. Wahrsch. Verw. Gebiete
, vol.58
, pp. 373-388
-
-
Perkins, E.1
-
28
-
-
0003981318
-
-
North Holland, Amsterdam and Akadémiai Kiadó, Budapest
-
Rényi, A. (1970). Probability Theory, North Holland, Amsterdam and Akadémiai Kiadó, Budapest.
-
(1970)
Probability Theory
-
-
Rényi, A.1
-
29
-
-
0039930370
-
Local time and invariance
-
Analytical Methods in Probability Theory, Proceedings, Oberwolfach, Germany (1980)
-
Révész, P. (1981). Local time and invariance. In: Lecture Notes in Mathematics 861, Analytical Methods in Probability Theory, Proceedings, Oberwolfach, Germany (1980), pp. 128-145.
-
(1981)
Lecture Notes in Mathematics 861
, pp. 128-145
-
-
Révész, P.1
-
31
-
-
0000975672
-
Lower limits of iterated Wiener processes
-
Shi, Z. (1995). Lower limits of iterated Wiener processes. Statist. Prob. Letters 23, 259-270.
-
(1995)
Statist. Prob. Letters
, vol.23
, pp. 259-270
-
-
Shi, Z.1
|