-
1
-
-
0034871624
-
Hausdorff dimension in exponential time
-
K. Ambos-Spies, W. Merkle, J. Reimann, and F. Stephan. Hausdorff dimension in exponential time. In Proceedings of the 16th IEEE Conference on Computational Complexity, pages 210-217, 2001.
-
(2001)
Proceedings of the 16th IEEE Conference on Computational Complexity
, pp. 210-217
-
-
Ambos-Spies, K.1
Merkle, W.2
Reimann, J.3
Stephan, F.4
-
2
-
-
35048836635
-
Effective strong dimension in algorithmic information and computational complexity
-
Proceedings of the Twenty-First Symposium on Theoretical Aspects of Computer Science. Springer-Verlag
-
K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension in algorithmic information and computational complexity. In Proceedings of the Twenty-First Symposium on Theoretical Aspects of Computer Science, volume 2996 of Lecture Notes in Computer Science, pages 632-643. Springer-Verlag, 2004.
-
(2004)
Lecture Notes in Computer Science
, vol.2996
, pp. 632-643
-
-
Athreya, K.B.1
Hitchcock, J.M.2
Lutz, J.H.3
Mayordomo, E.4
-
3
-
-
35248847451
-
Infinitely-often autoreducible sets
-
Proceedings of the 14th Annual International Symposium on Algorithms and Computation. Springer-Verlag
-
R. Beigel, L. Fortnow, and F. Stephan. Infinitely-often autoreducible sets. In Proceedings of the 14th Annual International Symposium on Algorithms and Computation, volume 2906 of Lecture Notes in Computer Science, pages 98-107. Springer-Verlag, 2003.
-
(2003)
Lecture Notes in Computer Science
, vol.2906
, pp. 98-107
-
-
Beigel, R.1
Fortnow, L.2
Stephan, F.3
-
4
-
-
0036305291
-
Compressibility and resource bounded measure
-
H. Buhrman and L. Longpré. Compressibility and resource bounded measure. SIAM Journal on Computing, 31(3):876-886, 2002.
-
(2002)
SIAM Journal on Computing
, vol.31
, Issue.3
, pp. 876-886
-
-
Buhrman, H.1
Longpré, L.2
-
5
-
-
0037163961
-
MAX3SAT is exponentially hard to approximate if NP has positive dimension
-
J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoretical Computer Science, 289(1):861-869, 2002.
-
(2002)
Theoretical Computer Science
, vol.289
, Issue.1
, pp. 861-869
-
-
Hitchcock, J.M.1
-
7
-
-
0037811185
-
Fractal dimension and logarithmic loss unpredictability
-
J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science, 304(1-3):431-441, 2003.
-
(2003)
Theoretical Computer Science
, vol.304
, Issue.1-3
, pp. 431-441
-
-
Hitchcock, J.M.1
-
9
-
-
0034188132
-
Grammar based codes: A new class of universal lossless source codes
-
J C. Kieffer and En hui Yang. Grammar based codes: A new class of universal lossless source codes. IEEE Transactions on Information Theory, 46:737-754, 2000.
-
(2000)
IEEE Transactions on Information Theory
, vol.46
, pp. 737-754
-
-
Kieffer, J.C.1
Yang, E.H.2
-
10
-
-
0017493286
-
A universal algortihm for sequential data compression
-
A. Lempel and J. Ziv. A universal algortihm for sequential data compression. IEEE Transaction on Information Theory, 23:337-343, 1977.
-
(1977)
IEEE Transaction on Information Theory
, vol.23
, pp. 337-343
-
-
Lempel, A.1
Ziv, J.2
-
11
-
-
0018019231
-
Compression of individual sequences via variable rate coding
-
A. Lempel and J. Ziv. Compression of individual sequences via variable rate coding. IEEE Transaction on Information Theory, 24:530-536, 1978.
-
(1978)
IEEE Transaction on Information Theory
, vol.24
, pp. 530-536
-
-
Lempel, A.1
Ziv, J.2
-
12
-
-
4944250896
-
Effective fractal dimensions
-
To appear. Preliminary version appeared in Computability and Complexity in Analysis, of Informatik Berichte. FernUniversität in Hagen, August
-
J. H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly. To appear. Preliminary version appeared in Computability and Complexity in Analysis, volume 302 of Informatik Berichte, pages 81-97. FernUniversität in Hagen, August 2003.
-
(2003)
Mathematical Logic Quarterly
, vol.302
, pp. 81-97
-
-
Lutz, J.H.1
-
13
-
-
0345227319
-
Dimension in complexity classes
-
J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32:1236-1259, 2003.
-
(2003)
SIAM Journal on Computing
, vol.32
, pp. 1236-1259
-
-
Lutz, J.H.1
-
14
-
-
0344118726
-
The dimensions of individual strings and sequences
-
J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation, 187:49-79, 2003.
-
(2003)
Information and Computation
, vol.187
, pp. 49-79
-
-
Lutz, J.H.1
-
15
-
-
0037120704
-
A Kolmogorov complexity characterization of constructive Hausdorff dimension
-
E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters, 84(1):1-3, 2002.
-
(2002)
Information Processing Letters
, vol.84
, Issue.1
, pp. 1-3
-
-
Mayordomo, E.1
-
16
-
-
26844493665
-
Effective Hausdorff dimension
-
Classical and New Paradigms of Computation and their Complexity Hierarchies, Papers of the conference "Foundations of the Formal Sciences III". Kluwer Academic Press
-
E. Mayordomo. Effective Hausdorff dimension. In Classical and New Paradigms of Computation and their Complexity Hierarchies, Papers of the conference "Foundations of the Formal Sciences III", volume 23 of Trends in Logic, pages 171-186. Kluwer Academic Press, 2004.
-
(2004)
Trends in Logic
, vol.23
, pp. 171-186
-
-
Mayordomo, E.1
|