메뉴 건너뛰기




Volumn 9, Issue 4, 1998, Pages 433-447

Emergent componential coding of a handwritten image database by neural self-organisation

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; BAYES THEOREM; HANDWRITING; HUMAN; PROBABILITY;

EID: 26444441501     PISSN: 0954898X     EISSN: None     Source Type: Journal    
DOI: 10.1088/0954-898X_9_4_003     Document Type: Article
Times cited : (4)

References (23)
  • 1
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow H B 1989 Unsupervised learning Neural Comput. 1 295-311
    • (1989) Neural Comput. , vol.1 , pp. 295-311
    • Barlow, H.B.1
  • 2
    • 0030832881 scopus 로고    scopus 로고
    • The 'independent components' of natural scenes are edge filters
    • submitted
    • Bell A J and Sejnowski T J 1997 The 'independent components' of natural scenes are edge filters Vision Res. submitted
    • (1997) Vision Res.
    • Bell, A.J.1    Sejnowski, T.J.2
  • 3
    • 85000288618 scopus 로고
    • USPS Office of Advanced Technology database of handwritten cities, states, ZIP codes, digits, and alphabetic characters
    • CEDAR 1992 USPS Office of Advanced Technology database of handwritten cities, states, ZIP codes, digits, and alphabetic characters Center of Excellence for Document Analysis and Recognition Image Database CD-ROM 1
    • (1992) Center of Excellence for Document Analysis and Recognition Image Database , vol.CD-ROM 1
  • 4
    • 0030297038 scopus 로고    scopus 로고
    • Varieties of Helmholtz machine
    • Dayan P and Hinton G E 1996 Varieties of Helmholtz machine Neural Networks 9 1385-403
    • (1996) Neural Networks , vol.9 , pp. 1385-1403
    • Dayan, P.1    Hinton, G.E.2
  • 5
    • 85000338560 scopus 로고
    • What is the goal of sensory coding?
    • Field D J 1994 What is the goal of sensory coding? Neural Comput. 6 559-601
    • (1994) Neural Comput. , vol.6 , pp. 559-601
    • Field, D.J.1
  • 6
    • 0025604930 scopus 로고
    • Forming sparse representations by local anti-Hebbian learning
    • Foldiak P 1990 Forming sparse representations by local anti-Hebbian learning Biol. Cybern. 64 165-70
    • (1990) Biol. Cybern. , vol.64 , pp. 165-170
    • Foldiak, P.1
  • 7
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman J H and Tukey J W 1974 A projection pursuit algorithm for exploratory data analysis IEEE Trans. Comput. C-23 881-90
    • (1974) IEEE Trans. Comput. , vol.C-23 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 9
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton G E, Dayan P, Frey B J and Neal R M 1995 The wake-sleep algorithm for unsupervised neural networks Science 268 1158-61
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 10
    • 0002834189 scopus 로고
    • Autoencoders, minimum description-length and Helmholtz free energy
    • ed J Cowan, G Tesauro and J Alspector (San Mateo, CA: Morgan Kaufman)
    • Hinton G E and Zemel R 1994 Autoencoders, minimum description-length and Helmholtz free energy Advances in Neural Information Processing Systems 6 ed J Cowan, G Tesauro and J Alspector (San Mateo, CA: Morgan Kaufman) pp 3-10
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.2
  • 11
    • 84899021859 scopus 로고    scopus 로고
    • Unsupervised learning by convex and conic coding
    • Cambridge, MA: MIT Press
    • Lee D D and Seung H S 1997 Unsupervised learning by convex and conic coding Advances in Neural Information Processing Systems 9 (Cambridge, MA: MIT Press) pp 515-21
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 515-521
    • Lee, D.D.1    Seung, H.S.2
  • 12
    • 0042303592 scopus 로고
    • Designing analysable networks
    • Oxford: Oxford University Press
    • Luttrell S P 1995 Designing analysable networks Handbook of Neural Computation (Oxford: Oxford University Press)
    • (1995) Handbook of Neural Computation
    • Luttrell, S.P.1
  • 13
    • 84958700322 scopus 로고    scopus 로고
    • Preprint N197039-NNM, Isaac Newton Institute, obtainable from
    • - 1997 A unified model of density models and auto-encoders Preprint N197039-NNM, Isaac Newton Institute, obtainable from http://www.newton.cam.ac.uk/preprints.html
    • (1997) A Unified Model of Density Models and Auto-encoders
  • 14
    • 26444583339 scopus 로고    scopus 로고
    • A Bayesian analysis of complementary approaches to training self-organising stochastic networks
    • Information Centre, DERA, Malvern, UK
    • - 1998 A Bayesian analysis of complementary approaches to training self-organising stochastic networks Technical Report DERA/CIS/CIS5/TR97165, Information Centre, DERA, Malvern, UK
    • (1998) Technical Report DERA/CIS/CIS5/TR97165
  • 15
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyser
    • Oja E 1982 A simplified neuron model as a principal component analyser J. Math. Biol. 15 267-73
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 16
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen B A and Field D J 1996 Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature 381 607-9
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 17
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by VI?
    • - 1997 Sparse coding with an overcomplete basis set: a strategy employed by VI? Vision Res. 37 3311-25
    • (1997) Vision Res. , vol.37 , pp. 3311-3325
  • 18
    • 0003040479 scopus 로고
    • A multiple cause mixture model for unsupervised learning
    • Saund E 1995 A multiple cause mixture model for unsupervised learning Neural Comput. 7 57-71
    • (1995) Neural Comput. , vol.7 , pp. 57-71
    • Saund, E.1
  • 19
    • 0038882545 scopus 로고
    • Self-organisation of position- And deformation-tolerant neural representations
    • Webber C J S 1991 Self-organisation of position- and deformation-tolerant neural representations Network: Comput. Neural Syst. 2 43-61
    • (1991) Network: Comput. Neural Syst. , vol.2 , pp. 43-61
    • Webber, C.J.S.1
  • 20
    • 0038882538 scopus 로고
    • Self-organisation of transformation-invariant detectors for constituents of perceptual patterns
    • - 1994 Self-organisation of transformation-invariant detectors for constituents of perceptual patterns Network: Comput. Neural Syst. 5 471-96
    • (1994) Network: Comput. Neural Syst. , vol.5 , pp. 471-496
  • 21
    • 0039475178 scopus 로고    scopus 로고
    • Generalisation and discrimination emerge from a self-organising componential network: A speech example
    • - 1997 Generalisation and discrimination emerge from a self-organising componential network: a speech example Network: Comput. Neural Syst. 8 425-40
    • (1997) Network: Comput. Neural Syst. , vol.8 , pp. 425-440
  • 22
    • 26444491076 scopus 로고    scopus 로고
    • Self-organisation of symmetry networks
    • submitted
    • - 1998 Self-organisation of symmetry networks Neural Comput. submitted
    • (1998) Neural Comput.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.