-
1
-
-
54649083940
-
-
W.T. Coffey, Adv. Chem. Phys. 103, 259 (1998). There are different ways to define the relaxation time. This paper presents a comprehensive review of the different definitions.
-
(1998)
Adv. Chem. Phys.
, vol.103
, pp. 259
-
-
Coffey, W.T.1
-
3
-
-
0000419716
-
-
R.H. Koch, G. Grinstein, G.A. Keefe, Y. Lu, P.L. Trouilloud, W.J. Gallagher, and S.S.P. Parkin, Phys. Rev. Lett. 84, 5419 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 5419
-
-
Koch, R.H.1
Grinstein, G.2
Keefe, G.A.3
Lu, Y.4
Trouilloud, P.L.5
Gallagher, W.J.6
Parkin, S.S.P.7
-
6
-
-
0000406786
-
-
W.T. Coffey, D.S.F. Crothers, Y.P. Kalmykov, E.S. Massawe, and J.T. Waldron, Phys. Rev. E 49, 1869 (1994).
-
(1994)
Phys. Rev. E
, vol.49
, pp. 1869
-
-
Coffey, W.T.1
Crothers, D.S.F.2
Kalmykov, Y.P.3
Massawe, E.S.4
Waldron, J.T.5
-
12
-
-
0034260555
-
-
T. Schrefl, W. Scholz, D. Suess, and J. Fidler, IEEE Trans. Magn. 36, 3189 (2000).
-
(2000)
IEEE Trans. Magn.
, vol.36
, pp. 3189
-
-
Schrefl, T.1
Scholz, W.2
Suess, D.3
Fidler, J.4
-
13
-
-
0029632727
-
-
W.T. Coffey, D.S.F. Crothers, J.L. Dormann, L.J. Geoghegan, Y.P. Kalmykov, J.T. Waldron, and A.W. Wickstead, J. Magn. Magn. Mater. 145, L263 (1995).
-
(1995)
J. Magn. Magn. Mater.
, vol.145
, pp. L263
-
-
Coffey, W.T.1
Crothers, D.S.F.2
Dormann, J.L.3
Geoghegan, L.J.4
Kalmykov, Y.P.5
Waldron, J.T.6
Wickstead, A.W.7
-
14
-
-
0031549350
-
-
W.T. Coffey, D.S.F. Crothers, J.L. Dormann, L.J. Geoghegan, and E.C. Kennedy, J. Magn. Magn. Mater. 173, L219 (1997).
-
(1997)
J. Magn. Magn. Mater.
, vol.173
, pp. L219
-
-
Coffey, W.T.1
Crothers, D.S.F.2
Dormann, J.L.3
Geoghegan, L.J.4
Kennedy, E.C.5
-
15
-
-
0034907970
-
-
W.T. Coffey, D.S.F. Crothers, J.L. Dormann, Y.P. Kalmykov, and S.V. Titov, Phys. Rev. B 64, 012411 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 12411
-
-
Coffey, W.T.1
Crothers, D.S.F.2
Dormann, J.L.3
Kalmykov, Y.P.4
Titov, S.V.5
-
19
-
-
0027437058
-
-
Strictly speaking, (formula presented) is only valid for ellipsoidal particles (in which case (formula presented) is diagonal when referred to the principal axes of the ellipsoid), since in any other case the demagnetizing field is not constant. However, the expression can be generalized to any uniformly magnetized body considering that (formula presented) is the average demagnetizing field inside the particle
-
Strictly speaking, (formula presented) is only valid for ellipsoidal particles (in which case (formula presented) is diagonal when referred to the principal axes of the ellipsoid), since in any other case the demagnetizing field is not constant. However, the expression can be generalized to any uniformly magnetized body considering that (formula presented) is the average demagnetizing field inside the particle. A.J. Newell, W. Williams, and D.J. Dunlop, J. Geophys. Res., [Solid Earth] 98, 9551 (1993).
-
(1993)
J. Geophys. Res., [Solid Earth]
, vol.98
, pp. 9551
-
-
Newell, A.J.1
Williams, W.2
Dunlop, D.J.3
-
22
-
-
0033517386
-
-
R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, and M.E. Welland, Europhys. Lett. 48, 221 (1999).
-
(1999)
Europhys. Lett.
, vol.48
, pp. 221
-
-
Cowburn, R.P.1
Koltsov, D.K.2
Adeyeye, A.O.3
Welland, M.E.4
-
23
-
-
39749106271
-
-
The self-demagnetizing tensor is diagonal for rectangular prisms: (formula presented)
-
The self-demagnetizing tensor is diagonal for rectangular prisms: (formula presented) A. Aharoni, J. Appl. Phys. 83, 3432 (1998).
-
(1998)
J. Appl. Phys.
, vol.83
, pp. 3432
-
-
Aharoni, A.1
-
24
-
-
0000800751
-
-
D.A. Garanin, E.C. Kennedy, D.S.F. Crothers, and W.T. Coffey, Phys. Rev. E 60, 6499 (2000).
-
(2000)
Phys. Rev. E
, vol.60
, pp. 6499
-
-
Garanin, D.A.1
Kennedy, E.C.2
Crothers, D.S.F.3
Coffey, W.T.4
-
26
-
-
0033529676
-
-
C.H. Back, R. Allenspach, W. Weber, S.S.P. Parkin, D. Weller, E.L. Garwin, and H.C. Siegmann, Science 285, 864 (1999).
-
(1999)
Science
, vol.285
, pp. 864
-
-
Back, C.H.1
Allenspach, R.2
Weber, W.3
Parkin, S.S.P.4
Weller, D.5
Garwin, E.L.6
Siegmann, H.C.7
|