메뉴 건너뛰기




Volumn 15, Issue 1, 2005, Pages 34-47

Unsupervised learning of nonlinear dependencies in natural images

Author keywords

Denoising; Dependency; Expectation maximization (EM) algorithm; Image segmentation; Independent component analysis (ICA); Nonlinear

Indexed keywords

DENOISING; DEPENDANCY; EXPECTATION MAXIMIZATION (EM) ALGORITHM; NONLINEAR;

EID: 25444492274     PISSN: 08999457     EISSN: None     Source Type: Journal    
DOI: 10.1002/ima.20036     Document Type: Article
Times cited : (3)

References (36)
  • 1
    • 0004200523 scopus 로고
    • MIT Press, Cambridge, MA
    • H. Barlow, Sensory communication, MIT Press, Cambridge, MA, 1961, pp. 217-234.
    • (1961) Sensory Communication , pp. 217-234
    • Barlow, H.1
  • 2
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • A.J. Bell and T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Comput 7 (1995), 1129-1159.
    • (1995) Neural Comput , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 3
    • 0030832881 scopus 로고    scopus 로고
    • The independent components of natural scenes are edge filters
    • A.J. Bell and T.J. Sejnowski, The independent components of natural scenes are edge filters, Vision Res 37 (1997), 3327-3338.
    • (1997) Vision Res , vol.37 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 4
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind source separation
    • J.F. Cardoso, Infomax and maximum likelihood for blind source separation, IEEE Signal Process Lett 4 (1997), 109-111.
    • (1997) IEEE Signal Process Lett , vol.4 , pp. 109-111
    • Cardoso, J.F.1
  • 5
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via em algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via EM algorithm, J Royal Statist Soc 39 (1977), 1-38.
    • (1977) J Royal Statist Soc , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 6
    • 0001794309 scopus 로고
    • Threshold selection for wavelet shrinkage of noisy data
    • D.L. Donoho and I.M. Johnstone, Threshold selection for wavelet shrinkage of noisy data, In Proc 16th Annu Int Conf IEEE, Vol. 1, 1994, pp. A24-A25.
    • (1994) Proc 16th Annu Int Conf IEEE , vol.1
    • Donoho, D.L.1    Johnstone, I.M.2
  • 7
    • 0023492118 scopus 로고
    • Relations between the statistics of natural images and the response properties of cortical cells
    • D.J. Field, Relations between the statistics of natural images and the response properties of cortical cells, J Opt Soc Am 4 (1987), 2379-2394.
    • (1987) J Opt Soc Am , vol.4 , pp. 2379-2394
    • Field, D.J.1
  • 8
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • D.J. Field, What is the goal of sensory coding? Neural Comput 6 (1994), 559-601.
    • (1994) Neural Comput , vol.6 , pp. 559-601
    • Field, D.J.1
  • 11
    • 0033322984 scopus 로고    scopus 로고
    • Beyond independent component analysis
    • A. Hyvarinen,Beyond independent component analysis, Proc 9th ICANN 99, Vol. 2, 1999, pp 809-814.
    • (1999) Proc 9th ICANN 99 , vol.2 , pp. 809-814
    • Hyvarinen, A.1
  • 13
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces
    • A. Hyvarinen and P.O. Hoyer, Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces, Neural Comput 12 (2000), 1705-1720.
    • (2000) Neural Comput , vol.12 , pp. 1705-1720
    • Hyvarinen, A.1    Hoyer, P.O.2
  • 14
    • 17144449542 scopus 로고    scopus 로고
    • Topographic independent component analysis as a model of VI receptive fields
    • A, Hyvarinen and P.O. Hoyer, Topographic independent component analysis as a model of VI receptive fields, Neurocomputing 38-40 (2001), 1307-1315.
    • (2001) Neurocomputing , vol.38-40 , pp. 1307-1315
    • Hyvarinen, A.1    Hoyer, P.O.2
  • 15
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvaerinen and E. Oja, A fast fixed-point algorithm for independent component analysis, Neural Comput 9 (1997), 1483-1492.
    • (1997) Neural Comput , vol.9 , pp. 1483-1492
    • Hyvaerinen, A.1    Oja, E.2
  • 16
    • 0003218917 scopus 로고    scopus 로고
    • Image denoising by sparse code shrinkage
    • S. Haykin and B. Kosko (Editors), IEEE Press
    • A. Hyvarinen, P.O. Hoyer, and E. Oja, Image denoising by sparse code shrinkage, In S. Haykin and B. Kosko (Editors), Intelligent signal processing, IEEE Press, 2001.
    • (2001) Intelligent Signal Processing
    • Hyvarinen, A.1    Hoyer, P.O.2    Oja, E.3
  • 20
    • 0003018061 scopus 로고    scopus 로고
    • The generalized Gaussian mixture model using ICA
    • Helsinki, Finland, 19-22 June
    • T.-W. Lee and M.S. Lewicki, The generalized Gaussian mixture model using ICA, InProc Int Workshop ICA, Helsinki, Finland, 19-22 June, 2000, pp. 239-244.
    • (2000) Proc Int Workshop ICA , pp. 239-244
    • Lee, T.-W.1    Lewicki, M.S.2
  • 21
    • 0036504424 scopus 로고    scopus 로고
    • Unsupervised image classification, segmentation, and enhancement using ICA mixture models
    • T.-W. Lee and M.S. Lewicki, Unsupervised image classification, segmentation, and enhancement using ICA mixture models, IEEE Trans Image Process 11 (2002), 270-279.
    • (2002) IEEE Trans Image Process , vol.11 , pp. 270-279
    • Lee, T.-W.1    Lewicki, M.S.2
  • 22
    • 0034290916 scopus 로고    scopus 로고
    • ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation
    • T.-W. Lee, M.S. Lewicki, and T.J. Sejnowski, ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation, IEEE Trans Pattern Anal Mach Intell 22 (2000), 1-12.
    • (2000) IEEE Trans Pattern Anal Mach Intell , vol.22 , pp. 1-12
    • Lee, T.-W.1    Lewicki, M.S.2    Sejnowski, T.J.3
  • 23
    • 0347517574 scopus 로고    scopus 로고
    • Learning higher-order structures in natural images
    • M.S. Lewicki and Y. Karklin, Learning higher-order structures in natural images, Network: Comput Neural Syst 14 (2003), 483-499.
    • (2003) Network: Comput Neural Syst , vol.14 , pp. 483-499
    • Lewicki, M.S.1    Karklin, Y.2
  • 24
    • 0032606945 scopus 로고    scopus 로고
    • Probabilistic framework for the adaptation and comparison of image codes
    • M.S. Lewicki and B.A. Olshausen, Probabilistic framework for the adaptation and comparison of image codes, J Opt Soc Am 16 (1999), 1587-1601.
    • (1999) J Opt Soc Am , vol.16 , pp. 1587-1601
    • Lewicki, M.S.1    Olshausen, B.A.2
  • 25
    • 0004255908 scopus 로고    scopus 로고
    • Carnegie Mellon University, McGraw-Hill
    • T. Mitchell, Machine learning, Carnegie Mellon University, McGraw-Hill, 1997.
    • (1997) Machine Learning
    • Mitchell, T.1
  • 26
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive-field properties by learning a sparse code for natural images
    • B.A. Olshausen and D.J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images, Nature 381 (1996), 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 27
    • 26444447071 scopus 로고    scopus 로고
    • Natural image statistics and efficient coding
    • B.A. Olshausen and D.J. Field, Natural image statistics and efficient coding, Network 7 (1996), 333-339.
    • (1996) Network , vol.7 , pp. 333-339
    • Olshausen, B.A.1    Field, D.J.2
  • 28
    • 0005700519 scopus 로고    scopus 로고
    • Multiscale annealing for real-time unsupervised texture segmentation
    • Institut fur Informatik III, University of Bonn, April
    • J. Puzicha and J.M. Buhmann,Multiscale annealing for real-time unsupervised texture segmentation, Technical Report IAI-TR-97-4, Institut fur Informatik III, University of Bonn, April 1997.
    • (1997) Technical Report , vol.IAI-TR-97-4
    • Puzicha, J.1    Buhmann, J.M.2
  • 29
    • 0034939633 scopus 로고    scopus 로고
    • Natural signal statistics and sensory gain control
    • O. Schwartz and E.P. Simoncelli, Natural signal statistics and sensory gain control, Nat Neurosci 4 (2001), 819-825.
    • (2001) Nat Neurosci , vol.4 , pp. 819-825
    • Schwartz, O.1    Simoncelli, E.P.2
  • 30
    • 0000446730 scopus 로고    scopus 로고
    • Bayesian denoising of visual images in the wavelet domain, bayesian inference
    • P. Muller and B. Vidakovic (Editors), Springer-Verlag, New York, Chapter 18
    • E.P. Simoncelli, Bayesian denoising of visual images in the wavelet domain, bayesian inference, In P. Muller and B. Vidakovic (Editors), Wavelet based models, Springer-Verlag, New York, 1999, pp. 291-308, Chapter 18.
    • (1999) Wavelet Based Models , pp. 291-308
    • Simoncelli, E.P.1
  • 32
    • 0346724352 scopus 로고    scopus 로고
    • Hierarchical models of variance sources
    • H. Valpola, M Harva, and J. Karhunen, Hierarchical models of variance sources, Signal Processing 84 (2004), 267-282.
    • (2004) Signal Processing , vol.84 , pp. 267-282
    • Valpola, H.1    Harva, M.2    Karhunen, J.3
  • 33
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • J.H. van Hateren and A. van der Schaaf, Independent component filters of natural images compared with simple cells in primary visual cortex, Proc R Soc Lond B 265 (1998), 359-336.
    • (1998) Proc R Soc Lond B , vol.265 , pp. 359-1336
    • Van Hateren, J.H.1    Van Der Schaaf, A.2
  • 34
    • 0003280252 scopus 로고    scopus 로고
    • Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons
    • R. Rao, B. Olshausen, and M. Lewicki (Editors), MIT Press
    • J. Wainwright, O. Schwartz, and E.P. Simoncelli, Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons, In R. Rao, B. Olshausen, and M. Lewicki (Editors), Probabilistic models of the brain: Perception and neural function, MIT Press, 2002.
    • (2002) Probabilistic Models of the Brain: Perception and Neural Function
    • Wainwright, J.1    Schwartz, O.2    Simoncelli, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.