-
1
-
-
0031276011
-
Bayesian network classifiers
-
Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997, 29(2-3): 131-163.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
2
-
-
0026992322
-
An analysis of Bayesian classifiers
-
Rosenbloom P. and Szolovits P. (ed.), Menlo Park: AAAI Press
-
Langley P, Iba W, Thompson K. An analysis of Bayesian classifiers. In: Rosenbloom P, Szolovits P, eds. Proc. of the 10th National Conf. on Artificial Intelligence. Menlo Park: AAAI Press, 1992. 223-228.
-
(1992)
Proc. of the 10th National Conf. on Artificial Intelligence
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
3
-
-
85031799549
-
Seminaive Bayesian classifier
-
Kodratoff Y. (ed.), New York: Springer-Verlag
-
Kononenko I. Seminaive Bayesian classifier. In: Kodratoff Y, ed. Proc. of the 6th European Working Session on Learning. New York: Springer-Verlag, 1991. 206-219.
-
(1991)
Proc. of the 6th European Working Session on Learning
, pp. 206-219
-
-
Kononenko, I.1
-
4
-
-
0008155075
-
Searching for dependencies in Bayesian classifiers
-
Fisher D. and Lenz H.J. (ed.), New York: Springer-Verlag
-
Pazzani MJ. Searching for dependencies in Bayesian classifiers. In: Fisher D, Lenz HJ, eds. Learning from Data: Artificial Intelligence and Statistics V. New York: Springer-Verlag. 1996. 239-248.
-
(1996)
Learning from Data: Artificial Intelligence and Statistics V
, pp. 239-248
-
-
Pazzani, M.J.1
-
5
-
-
0001901666
-
Induction of selective Bayesian classifiers
-
Mantaras R.L. and Poole D.L. (ed.), San Francisco: Morgan Kaufmann Publishers
-
Langley P, Sage S. Induction of selective Bayesian classifiers. In: Mantaras RL, Poole DL, eds. Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1994. 399-406.
-
(1994)
Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence
, pp. 399-406
-
-
Langley, P.1
Sage, S.2
-
7
-
-
85156137079
-
Scaling up the accuracy of Naive-Bayes classifiers: A decision-tree hybrid
-
Simoudis E., Han J. and Fayyad U.M. (ed.), Menlo Park: AAAI Press
-
Kohavi R. Scaling up the accuracy of Naive-Bayes classifiers: A decision-tree hybrid. In: Simoudis E, Han J, Fayyad UM, eds. Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, 1996. 202-207.
-
(1996)
Proc. of the 2nd Int'l. Conf. on Knowledge Discovery and Data Mining
, pp. 202-207
-
-
Kohavi, R.1
-
8
-
-
0002610991
-
Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches
-
Heckerman D.E. and Whittaker J. (ed.), San Francisco: Morgan Kaufmann Publishers
-
Keogh EJ, Pazzani MJ. Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. In: Heckerman DE, Whittaker J, eds. Proc. of the Uncertainty'99: The 7th Int'l Workshop on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann Publishers, 1999. 225-230.
-
(1999)
Proc. of the Uncertainty'99: The 7th Int'l. Workshop on Artificial Intelligence and Statistics
, pp. 225-230
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
9
-
-
0042614837
-
Comparing Bayesian network classifiers
-
Laskey K.B. and Prade H. (ed.), San Francisco: Morgan Kaufmann Publishers
-
Cheng J, Greiner R. Comparing Bayesian network classifiers. In: Laskey KB, Prade H, eds. Proc. of the 15th Conf. on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1999. 101-108.
-
(1999)
Proc. of the 15th Conf. on Uncertainty in Artificial Intelligence
, pp. 101-108
-
-
Cheng, J.1
Greiner, R.2
-
10
-
-
0001019707
-
Learning bayesian networks is NP-complete
-
Fisher D.H. and Lenz H.J. (ed.), New York: Springer-Verlag
-
Chickering DM, Geiger D, Heckerman D. Learning Bayesian networks is NP-complete. In: Fisher DH, Lenz HJ, eds. Learning from Data: Artificial Intelligence and Statistics V. New York: Springer-Verlag, 1996. 121-130.
-
(1996)
Learning from Data: Artificial Intelligence and Statistics V
, pp. 121-130
-
-
Chickering, D.M.1
Geiger, D.2
Heckerman, D.3
-
11
-
-
0004255908
-
-
New York: McGraw-Hill Companies, Inc.
-
Mitchell TM. Machine Learning. New York: McGraw-Hill Companies, Inc., 1997. 154-200.
-
(1997)
Machine Learning
, pp. 154-200
-
-
Mitchell, T.M.1
-
12
-
-
0036567524
-
Learning belief networks from data: An information theory based approach
-
Cheng J, Bell D, Liu W. Learning belief networks from data: An information theory based approach. Artificial Intelligence, 2002, 137(1-2): 43-90.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Bell, D.2
Liu, W.3
-
13
-
-
0004294792
-
-
Beijing: Science Press, Chinese source
-
Lu RQ. Artificial Intelligence. Beijing: Science Press, 1989. 1134-1147 (in Chinese).
-
(1989)
Artificial Intelligence
, pp. 1134-1147
-
-
Lu, R.Q.1
-
14
-
-
0034301677
-
Lazy learning of Bayesian rules
-
Zheng Z, Webb GI. Lazy learning of Bayesian rules. Machine Learning, 2000, 41(1): 53-84.
-
(2000)
Machine Learning
, vol.41
, Issue.1
, pp. 53-84
-
-
Zheng, Z.1
Webb, G.I.2
|