메뉴 건너뛰기




Volumn 1268, Issue C, 2004, Pages 923-928

Characteristics of a massive training artificial neural network in the distinction between lung nodules and vessels in CT images

Author keywords

Computer aided diagnosis; Lung cancer screening; Nodule enhancement; rotation; Scale

Indexed keywords


EID: 25144510802     PISSN: 05315131     EISSN: None     Source Type: Book Series    
DOI: 10.1016/j.ics.2004.03.037     Document Type: Article
Times cited : (7)

References (16)
  • 1
    • 0035185824 scopus 로고    scopus 로고
    • CT screening for lung cancer: coping with nihilistic recommendations
    • O.S Miettinen C.I Henschke CT screening for lung cancer: coping with nihilistic recommendations Radiology 221 2001 592 596
    • (2001) Radiology , vol.221 , pp. 592-596
    • Miettinen, O.S1    Henschke, C.I2
  • 2
    • 0032565365 scopus 로고    scopus 로고
    • Mass screening for lung cancer with mobile spiral computed tomography scanner
    • S Sone Mass screening for lung cancer with mobile spiral computed tomography scanner Lancet 351 1998 1242 1245
    • (1998) Lancet , vol.351 , pp. 1242-1245
    • Sone, S1
  • 3
    • 0029865849 scopus 로고    scopus 로고
    • Missed lung cancer at CT: imaging findings in nine patients
    • J.W Gurney Missed lung cancer at CT: imaging findings in nine patients Radiology 199 1996 117 122
    • (1996) Radiology , vol.199 , pp. 117-122
    • Gurney, J.W1
  • 4
    • 0036892529 scopus 로고    scopus 로고
    • Lung cancer missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings
    • F Li Lung cancer missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings Radiology 225 2002 673 683
    • (2002) Radiology , vol.225 , pp. 673-683
    • Li, F1
  • 5
    • 0028300771 scopus 로고
    • Computerized detection of pulmonary nodules in CT images
    • M.L Giger K.T Bae H MacMahon Computerized detection of pulmonary nodules in CT images Invest. Radiol. 29 1994 459 465
    • (1994) Invest. Radiol. , vol.29 , pp. 459-465
    • Giger, M.L1    Bae, K.T2    MacMahon, H3
  • 6
    • 0036891913 scopus 로고    scopus 로고
    • Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program
    • S.G Armato Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program Radiology 225 2002 685 692
    • (2002) Radiology , vol.225 , pp. 685-692
    • Armato, S.G1
  • 7
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT
    • K Suzuki Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT Med. Phys. 30 2003 1602 1617
    • (2003) Med. Phys. , vol.30 , pp. 1602-1617
    • Suzuki, K1
  • 8
    • 0036647658 scopus 로고    scopus 로고
    • Efficient approximation of neural filters for removing quantum noise from images
    • K Suzuki I Horiba N Sugie Efficient approximation of neural filters for removing quantum noise from images IEEE Trans. Signal Process. 50 2002 1787 1799
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 1787-1799
    • Suzuki, K1    Horiba, I2    Sugie, N3
  • 9
    • 0036826125 scopus 로고    scopus 로고
    • Neural filter with selection of input features and its application to image quality improvement of medical image sequences
    • K Suzuki Neural filter with selection of input features and its application to image quality improvement of medical image sequences IEICE Trans. Inf. Syst. E85-D 2002 1710 1718
    • (2002) IEICE Trans. Inf. Syst. , vol.E85-D , pp. 1710-1718
    • Suzuki, K1
  • 10
    • 0348011365 scopus 로고    scopus 로고
    • Neural edge enhancer for supervised edge enhancement from noisy images
    • K Suzuki I Horiba N Sugie Neural edge enhancer for supervised edge enhancement from noisy images IEEE Trans. Pattern Anal. Mach. Intell. 25 2003 1582 1596
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1582-1596
    • Suzuki, K1    Horiba, I2    Sugie, N3
  • 11
    • 1642411032 scopus 로고    scopus 로고
    • Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector
    • K Suzuki Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector IEEE Trans. Med. Imag. 23 2004 330 339
    • (2004) IEEE Trans. Med. Imag. , vol.23 , pp. 330-339
    • Suzuki, K1
  • 13
    • 0035251045 scopus 로고    scopus 로고
    • A simple neural network pruning algorithm with application to filter synthesis
    • K Suzuki I Horiba N Sugie A simple neural network pruning algorithm with application to filter synthesis Neural Process. Lett. 13 2001 43 53
    • (2001) Neural Process. Lett. , vol.13 , pp. 43-53
    • Suzuki, K1    Horiba, I2    Sugie, N3
  • 14
    • 0041419441 scopus 로고    scopus 로고
    • Effect of a small number of training cases on the performance of massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT
    • K Suzuki Effect of a small number of training cases on the performance of massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT Proc. SPIE Med. Imag. (SPIE MI) 5032 2003 1355 1366
    • (2003) Proc. SPIE Med. Imag. (SPIE MI) , vol.5032 , pp. 1355-1366
    • Suzuki, K1
  • 15
    • 0029338665 scopus 로고
    • Recognition of coronary arterial stenosis using neural network on DSA system
    • K Suzuki Recognition of coronary arterial stenosis using neural network on DSA system Syst. Comput. Jpn. 26 1995 66 74
    • (1995) Syst. Comput. Jpn. , vol.26 , pp. 66-74
    • Suzuki, K1
  • 16
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • C.M Bishop Neural Networks for Pattern Recognition 1995 Oxford Univ. Press New York
    • (1995)
    • Bishop, C.M1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.