-
2
-
-
0037601219
-
-
b) A. D. Rodriguez, C. Ramirez, I. I. Rodriguez, C. L. Barnes, J. Org. Chem. 2000, 65, 1390-1398;
-
(2000)
J. Org. Chem.
, vol.65
, pp. 1390-1398
-
-
Rodriguez, A.D.1
Ramirez, C.2
Rodriguez, I.I.3
Barnes, C.L.4
-
3
-
-
0032476081
-
-
c) A. D. Rodriguez, E. Gonzalez, S. D. Huang, J. Org. Chem. 1998, 63, 7083-7091.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 7083-7091
-
-
Rodriguez, A.D.1
Gonzalez, E.2
Huang, S.D.3
-
5
-
-
25144458479
-
-
see reference [1b]
-
b) for a discussion, see reference [1b].
-
-
-
-
6
-
-
0000442967
-
-
a) A. G. Dossetter, T. F. Jamison, E. N. Jacobsen, Angew. Chem. 1999, 111, 2549-2552;
-
(1999)
Angew. Chem.
, vol.111
, pp. 2549-2552
-
-
Dossetter, A.G.1
Jamison, T.F.2
Jacobsen, E.N.3
-
7
-
-
0033549737
-
-
Angew. Chem. Int. Ed. 1999, 38, 2398-2400;
-
(1999)
Angew. Chem. Int. Ed.
, vol.38
, pp. 2398-2400
-
-
-
8
-
-
0013059152
-
-
b) K. Gademann, D.E. Chavez, E. N. Jacobsen, Angew. Chem. 2002, 114, 3185-3187;
-
(2002)
Angew. Chem.
, vol.114
, pp. 3185-3187
-
-
Gademann, K.1
Chavez, D.E.2
Jacobsen, E.N.3
-
9
-
-
0037118895
-
-
Angew. Chem. Int. Ed. 2002, 41, 3059-3061;
-
(2002)
Angew. Chem. Int. Ed.
, vol.41
, pp. 3059-3061
-
-
-
12
-
-
0142214760
-
-
Angew. Chem. Int. Ed. 2003, 42, 4771-4774.
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 4771-4774
-
-
-
13
-
-
25144463459
-
-
in press
-
See following paper in this issue: A. A. Boezio, E. R. Jarvo, B. M. Lawrence, E. N. Jacobsen, Angew. Chem. 2005, 117, in press;
-
(2005)
Angew. Chem.
, vol.117
-
-
Boezio, A.A.1
Jarvo, E.R.2
Lawrence, B.M.3
Jacobsen, E.N.4
-
14
-
-
25144455069
-
-
in press; DOI: 10.1002/anie.200502178
-
Angew. Chem. Int. Ed. 2005, 44, in press; DOI: 10.1002/anie.200502178.
-
(2005)
Angew. Chem. Int. Ed.
, vol.44
-
-
-
16
-
-
0037901375
-
-
a) K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem. 2002, 114, 1742-1773;
-
(2002)
Angew. Chem.
, vol.114
, pp. 1742-1773
-
-
Nicolaou, K.C.1
Snyder, S.A.2
Montagnon, T.3
Vassilikogiannakis, G.4
-
17
-
-
0346545910
-
-
Angew. Chem. Int. Ed. 2002, 41, 1669-1698;
-
(2002)
Angew. Chem. Int. Ed.
, vol.41
, pp. 1669-1698
-
-
-
18
-
-
6444234868
-
-
; b) Q.-Y. Hu, G. Zhou, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 13708-13713.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 13708-13713
-
-
Hu, Q.-Y.1
Zhou, G.2
Corey, E.J.3
-
19
-
-
0000210159
-
-
K. Mikami, Y. Motoyama, M. Terada, J. Am. Chem. Soc. 1994, 116, 2812-2820.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 2812-2820
-
-
Mikami, K.1
Motoyama, Y.2
Terada, M.3
-
20
-
-
0035905678
-
-
The Mikami catalytic qDA was applied successfully in the Nicolaou synthesis of colombiasin A: K. C. Nicolaou, G. Vassilikogiannakis, W. Magerlein, R. Kranich, Chem. Eur. J. 2001, 7, 5359-5371.
-
(2001)
Chem. Eur. J.
, vol.7
, pp. 5359-5371
-
-
Nicolaou, K.C.1
Vassilikogiannakis, G.2
Magerlein, W.3
Kranich, R.4
-
22
-
-
1842841091
-
-
and references therein
-
D. H. Ryu, G. Zhou, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 4800-4802, and references therein.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 4800-4802
-
-
Ryu, D.H.1
Zhou, G.2
Corey, E.J.3
-
23
-
-
0001349329
-
-
(Eds.: S. Patai, Z. Rappoport), Wiley, Chicester
-
Y. Naruta, K. Maruyama in The Chemistry of the Quinoid Compounds, Vol. II (Eds.: S. Patai, Z. Rappoport), Wiley, Chicester, 1988, pp. 242-336.
-
(1988)
The Chemistry of the Quinoid Compounds, Vol. II
, vol.2
, pp. 242-336
-
-
Naruta, Y.1
Maruyama, K.2
-
24
-
-
25144473032
-
-
note
-
1H NMR analyses of the unpurified qDA reaction mixtures suggest that the cycloadditions are clean and that product loss occurs during workup.
-
-
-
-
25
-
-
0037018443
-
-
and references therein
-
III-salen complexes have also been shown to catalyze enantioselective Diels-Alder reactions of 1-amino-1,3-butadienes. See: Y. Huang, T. Iwama, V. H. Rawal, Org. Lett. 2002, 4, 1163-1166, and references therein.
-
(2002)
Org. Lett.
, vol.4
, pp. 1163-1166
-
-
Huang, Y.1
Iwama, T.2
Rawal, V.H.3
-
26
-
-
0034715459
-
-
For selected examples of the application of 8 in target-oriented synthesis, see: a) FR901464: C. F. Thompson, T. F. Jamison, E. N. Jacobsen, J. Am. Chem. Soc. 2000, 122, 10482-10483;
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 10482-10483
-
-
Thompson, C.F.1
Jamison, T.F.2
Jacobsen, E.N.3
-
27
-
-
0035904404
-
-
C. F. Thompson, T. F. Jamison, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 9974-9983;
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 9974-9983
-
-
Thompson, C.F.1
Jamison, T.F.2
Jacobsen, E.N.3
-
32
-
-
0035807553
-
-
e) laulilamide: I. Paterson, C. De Savi, M. Tudge, Org. Lett. 2001, 3, 3149-3152;
-
(2001)
Org. Lett.
, vol.3
, pp. 3149-3152
-
-
Paterson, I.1
De Savi, C.2
Tudge, M.3
-
36
-
-
25144513456
-
-
unpublished results
-
Kinetic and mechanistic studies of HDA reactions promoted by 8 indicate a dimeric catalyst structure both in the ground state and in the rate-determining transition state. R. T. Ruck, E. N. Jacobsen, unpublished results.
-
-
-
Ruck, R.T.1
Jacobsen, E.N.2
-
37
-
-
25144492076
-
-
see ref. [10]
-
See Supporting Information for details. Cationic oxazaborolidine catalysts afford products with opposite regioselectivity (see ref. [10]).
-
-
-
-
38
-
-
25144471159
-
-
Details of the crystal structure analysis are provided as Supporting Information. CCDC-262884 (9) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
-
-
-
-
39
-
-
25144514452
-
-
see preparation of 6 in Scheme 3 in reference [4]
-
For example, the inverse electron demand hetero-Diels-Alder reaction employed in the first step of the colombiasin synthesis (see preparation of 6 in Scheme 3 in reference [4]) proceeded with 78 % ee with monomeric catalyst 9 and 93 % ee with dimeric catalyst 8.
-
-
-
-
40
-
-
25144432368
-
-
note
-
If a monomeric catalyst structure analogous to that of 9 is assumed in the ee-determining step with one of the water molecules replaced by the quinone substrate, then the intriguing question arises about which of the two stereochemically inequivalent binding sites is engaged. Qualitatively, it would appear that binding to the inner, concave face of the catalyst would be most consistent with the high enantioselectivities observed in the qDA.
-
-
-
-
41
-
-
25144436918
-
-
note
-
Reactions carried out at -40°C generally afforded higher enantioselectivity, albeit with slower rates; these conditions were employed for those substrates that were generated in < 90% ee at 0°C. For example, the reaction of benzoquinone with diene 4 afforded cycloadduct in 79% ee at 0°C, and 86% ee at -40°C (Table 2, entry 4).
-
-
-
-
42
-
-
25144463967
-
-
See Supporting Information for details
-
See Supporting Information for details.
-
-
-
|