-
1
-
-
0028513311
-
-
Collings, B. A.; Athanassenas, K.; Lacombe, D.; Rayner, D. M.; Hackett, P. A. J. Chem. Phys. 1994, 101, 3506-3513.
-
(1994)
J. Chem. Phys.
, vol.101
, pp. 3506-3513
-
-
Collings, B.A.1
Athanassenas, K.2
Lacombe, D.3
Rayner, D.M.4
Hackett, P.A.5
-
2
-
-
0031549634
-
-
Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Wing, C.; Ascensio, J.; Yacaman, M. J. J. Phys. Chem. B 1997, 101, 7885-7891.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 7885-7891
-
-
Schaaff, T.G.1
Shafigullin, M.N.2
Khoury, J.T.3
Vezmar, I.4
Whetten, R.L.5
Cullen, W.G.6
First, P.N.7
Wing, C.8
Ascensio, J.9
Yacaman, M.J.10
-
3
-
-
0032568887
-
-
Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098-2101.
-
(1998)
Science
, vol.280
, pp. 2098-2101
-
-
Chen, S.1
Ingram, R.S.2
Hostetler, M.J.3
Pietron, J.J.4
Murray, R.W.5
Schaaff, T.G.6
Khoury, J.T.7
Alvarez, M.M.8
Whetten, R.L.9
-
5
-
-
0037015744
-
-
Woehrle, G. H.; Warner, M. G.; Hutchison, J. E. J. Phys. Chem. B 2002, 106, 9979-9981.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 9979-9981
-
-
Woehrle, G.H.1
Warner, M.G.2
Hutchison, J.E.3
-
6
-
-
0346849924
-
-
Grant, C. D.; Schwartzberg, A. M.; Yang, Y.; Chen, S.; Zhang, J. Z. Chem. Phys. Lett. 2004, 383, 31-34.
-
(2004)
Chem. Phys. Lett.
, vol.383
, pp. 31-34
-
-
Grant, C.D.1
Schwartzberg, A.M.2
Yang, Y.3
Chen, S.4
Zhang, J.Z.5
-
8
-
-
13344287003
-
-
(b) Pignolet, L. H.; Aubart, M. A.; Craighead, K. L.; Gould, R. A. T.; Krogstad, D. A.; Wiley, J. S. Coord. Chem. Rev. 1995, 143, 219-263.
-
(1995)
Coord. Chem. Rev.
, vol.143
, pp. 219-263
-
-
Pignolet, L.H.1
Aubart, M.A.2
Craighead, K.L.3
Gould, R.A.T.4
Krogstad, D.A.5
Wiley, J.S.6
-
15
-
-
0000397748
-
-
Bartlett, P. A.; Bauer, B.; Singer, S. J. J. Am. Chem. Soc. 1978, 100, 5085-5089.
-
(1978)
J. Am. Chem. Soc.
, vol.100
, pp. 5085-5089
-
-
Bartlett, P.A.1
Bauer, B.2
Singer, S.J.3
-
19
-
-
0004514567
-
-
Schoenauer, D.; Lauer, H.; Kreibig, U. Z. Phys. D 1991, 20, 301-304.
-
(1991)
Z. Phys. D
, vol.20
, pp. 301-304
-
-
Schoenauer, D.1
Lauer, H.2
Kreibig, U.3
-
21
-
-
0034500395
-
-
(b) Warner, M. G.; Reed, S. M.; Hutchison, J. E. Chem. Mater. 2000, 12, 3316-3320.
-
(2000)
Chem. Mater.
, vol.12
, pp. 3316-3320
-
-
Warner, M.G.1
Reed, S.M.2
Hutchison, J.E.3
-
22
-
-
13944251653
-
-
Woehrle, G. H.; Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 2005, 127, 2172-2183.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 2172-2183
-
-
Woehrle, G.H.1
Brown, L.O.2
Hutchison, J.E.3
-
26
-
-
3142732803
-
-
Woehrle, G. H.; Warner, M. G.; Hutchison, J. E. Langmuir 2004, 20, 5982-5988.
-
(2004)
Langmuir
, vol.20
, pp. 5982-5988
-
-
Woehrle, G.H.1
Warner, M.G.2
Hutchison, J.E.3
-
29
-
-
24944539543
-
-
note
-
11 clusters can be dissolved in ethanol. Exceptions are clusters stabilized with long-chain alkanethiols such octadecanethiol and hexadecanethiol. In these cases, less polar solvents such as 2-propanol must be used for chromatography. Alternatively, dichloromethane or chloroform can be used.
-
-
-
-
30
-
-
0032630577
-
-
Hostetler, M. J.; Templeton, A. C.; Murray, R. W. Langmuir 1999, 15, 3782-3789.
-
(1999)
Langmuir
, vol.15
, pp. 3782-3789
-
-
Hostetler, M.J.1
Templeton, A.C.2
Murray, R.W.3
-
31
-
-
24944462714
-
-
note
-
At temperatures below 40°C, no ligand exchange is observed over a period of several days.
-
-
-
-
32
-
-
24944492833
-
-
note
-
See Supporting Information.
-
-
-
-
33
-
-
24944537852
-
-
note
-
This is probably due to the rapid transfer of the exchanging particles from the organic to the aqueous phase.
-
-
-
-
34
-
-
15844386157
-
-
Terrill, R. H.; Postlethwaite, T. A.; Chen, C.-h.; Poon, C.-D.; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G.; Londono, J. D.; Superfine, R.; Falvo, M.; Johnson, C. S. H., Jr.; Samulski, E. T.; Murray, R. W. J. Am. Chem. Soc. 1995, 117, 12537-12548.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 12537-12548
-
-
Terrill, R.H.1
Postlethwaite, T.A.2
Chen, C.-H.3
Poon, C.-D.4
Terzis, A.5
Chen, A.6
Hutchison, J.E.7
Clark, M.R.8
Wignall, G.9
Londono, J.D.10
Superfine, R.11
Falvo, M.12
Johnson Jr., C.S.H.13
Samulski, E.T.14
Murray, R.W.15
-
35
-
-
24944561862
-
-
note
-
The reported size dispersity of ∼30% is due to the low contrast of the samples, the presence of touching particles, and irregularities in the support film which limits the accuracy of the analysis. Even in the case of the monodisperse, phosphine-stabilized undecagold precursor, size analysis gives 30% size dispersity.
-
-
-
-
37
-
-
0000064563
-
-
Haeberlen, O. D.; Chung, S.-C.; Stener, M.; Roesch, N. J. Chem. Phys. 1997, 106, 5189-5201.
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 5189-5201
-
-
Haeberlen, O.D.1
Chung, S.-C.2
Stener, M.3
Roesch, N.4
-
40
-
-
24944528194
-
-
note
-
9 a similar sensitivity to oxidation has not been observed for 1 and the thiol-stabilized exchange products.
-
-
-
-
41
-
-
24944484989
-
-
note
-
6 at 55°C over the course of 12 h.
-
-
-
-
42
-
-
24944536636
-
-
note
-
6 at 55°C over the course of 2 h.
-
-
-
-
43
-
-
24944455812
-
-
note
-
3 ligands do not react with the azide under identical conditions.
-
-
-
-
45
-
-
0037138632
-
-
Hasan, M.; Bethell, D.; Brust, M. J. Am. Chem. Soc. 2002, 124, 1132-1133.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 1132-1133
-
-
Hasan, M.1
Bethell, D.2
Brust, M.3
-
48
-
-
0033518568
-
-
It is known that ligand exchange reactions can result in growth of the nanoparticles and changes in the size dispersity. For example, ligand exchange of 1.5-nm phosphine-stabilized Au nanoparticles with alkylamines leads to nanoparticle growth and ripening (see: Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 1999, 121, 882-883).
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 882-883
-
-
Brown, L.O.1
Hutchison, J.E.2
-
49
-
-
0030009986
-
-
Hostetler, M. J.; Green, S. J.; Stokes, J. J.; Murray, R. W. J. Am. Chem. Soc. 1996, 118, 4212-4213.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 4212-4213
-
-
Hostetler, M.J.1
Green, S.J.2
Stokes, J.J.3
Murray, R.W.4
-
50
-
-
24944536056
-
-
note
-
The concentration range was chosen to include the concentration typically used for UV-visible spectroscopy of the nanoparticle samples.
-
-
-
|