-
1
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
-
J.D. Carroll, and J.J. Chang Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition Psychometrika 35 1970 283 319
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Carroll, J.D.1
Chang, J.J.2
-
3
-
-
0002740437
-
Foundations of the Parafac procedure: Models and conditions for an "explanatory" multimodal factor analysis
-
R.L. Harshman Foundations of the Parafac procedure models and conditions for an "explanatory" multimodal factor analysis UCLA Work. Pap. Phonetics 16 1970 1 84
-
(1970)
UCLA Work. Pap. Phonetics
, vol.16
, pp. 1-84
-
-
Harshman, R.L.1
-
4
-
-
0002740439
-
Determination and proof of minimum uniqueness conditions for Parafac-1
-
R.L. Harshman Determination and proof of minimum uniqueness conditions for Parafac-1 UCLA Work. Pap. Phonetics 22 1972 111 117
-
(1972)
UCLA Work. Pap. Phonetics
, vol.22
, pp. 111-117
-
-
Harshman, R.L.1
-
5
-
-
0002258223
-
The PARAFAC model for three-way factor analysis and multidimensional scaling
-
H.G. Law C.W. Snyder J.A. Hattie R.P. McDonald Praeger New York
-
R.A. Harshman, and M.E. Lundy The PARAFAC model for three-way factor analysis and multidimensional scaling H.G. Law C.W. Snyder J.A. Hattie R.P. McDonald Research Methods for Multimode Data Analysis 1984 Praeger New York 122 215
-
(1984)
Research Methods for Multimode Data Analysis
, pp. 122-215
-
-
Harshman, R.A.1
Lundy, M.E.2
-
6
-
-
4344616103
-
Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints
-
Jiang, T., Sidiropoulos, N.D., 2004. Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints. IEEE Trans. Signal Process. 52, 2625-2636.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, pp. 2625-2636
-
-
Jiang, T.1
Sidiropoulos, N.D.2
-
7
-
-
48749101457
-
Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics
-
J.B. Kruskal Three-way arrays rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics Linear Algebra Appl. 18 1977 95 138
-
(1977)
Linear Algebra Appl.
, vol.18
, pp. 95-138
-
-
Kruskal, J.B.1
-
8
-
-
0035447407
-
Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays
-
X. Liu, and N.D. Sidiropoulos Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays IEEE Trans. Signal Process. 49 2001 2074 2086
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, pp. 2074-2086
-
-
Liu, X.1
Sidiropoulos, N.D.2
-
9
-
-
2642580865
-
Partial uniqueness in Candecomp/Parafac
-
Ten Berge, J.M.F., 2004. Partial uniqueness in Candecomp/Parafac. J. Chemometr. 18, 12-16.
-
(2004)
J. Chemometr.
, vol.18
, pp. 12-16
-
-
Ten Berge, J.M.F.1
-
11
-
-
3142774353
-
Typical rank and Indscal dimensionality for symmetric three-way arrays of order i × 2 × 2 or i × 3 × 3
-
Ten Berge, J.M.F., Sidiropoulos, N.D., Rocci, R., 2004. Typical rank and Indscal dimensionality for symmetric three-way arrays of order I × 2 × 2 or I × 3 × 3. Linear Algebra Appl. 388, 363-377.
-
(2004)
Linear Algebra Appl.
, vol.388
, pp. 363-377
-
-
Ten Berge, J.M.F.1
Sidiropoulos, N.D.2
Rocci, R.3
|