메뉴 건너뛰기




Volumn 66, Issue 2, 2004, Pages 411-427

On the use of local optimizations within Metropolis-Hastings updates

Author keywords

Adaptation; Markov chain Monte Carlo methods; Metropolis Hastings updating; Mode jumping proposals; Multimodal distribution; Optimization; Prior approximation

Indexed keywords


EID: 2442621203     PISSN: 13697412     EISSN: None     Source Type: Journal    
DOI: 10.1046/j.1369-7412.2003.05329.x     Document Type: Article
Times cited : (10)

References (26)
  • 1
    • 2442578536 scopus 로고    scopus 로고
    • Controlled MCMC for optimal sampling
    • Department of Mathematics, University of Bristol, Bristol
    • Andrieu, C. and Robert, C. P. (2001) Controlled MCMC for optimal sampling. Technical Report. Department of Mathematics, University of Bristol, Bristol. (Available from www.statslab.cam.ac.uk/~mcmc/.)
    • (2001) Technical Report
    • Andrieu, C.1    Robert, C.P.2
  • 3
    • 0001149688 scopus 로고
    • Bayes inference in regression models with ARMA(p, q) errors
    • Chib, S. and Greenberg, E. (1994) Bayes inference in regression models with ARMA(p, q) errors. J. Econometr., 64, 183-206.
    • (1994) J. Econometr. , vol.64 , pp. 183-206
    • Chib, S.1    Greenberg, E.2
  • 5
    • 0002425247 scopus 로고
    • On Markov chain Monte Carlo acceleration
    • Gelfand, A. E. and Sahu, S. K. (1994) On Markov chain Monte Carlo acceleration. J. Comput. Graph. Statist., 3, 261-276.
    • (1994) J. Comput. Graph. Statist. , vol.3 , pp. 261-276
    • Gelfand, A.E.1    Sahu, S.K.2
  • 6
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. and Rubin, D. (1992) Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci., 7, 457-472.
    • (1992) Statist. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.2
  • 9
    • 0032333313 scopus 로고    scopus 로고
    • Adaptive Markov chain Monte Carlo through regeneration
    • Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998) Adaptive Markov chain Monte Carlo through regeneration. J. Am. Statist. Ass., 93, 1045-1054.
    • (1998) J. Am. Statist. Ass. , vol.93 , pp. 1045-1054
    • Gilks, W.R.1    Roberts, G.O.2    Sahu, S.K.3
  • 10
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., Saksman, E. and Tamminen, J. (2001) An adaptive Metropolis algorithm. Bernoulli, 7, 223-242.
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 11
    • 77956890234 scopus 로고
    • Monte Carlo simulation methods using Markov chains and their applications
    • Hastings, W. K. (1970) Monte Carlo simulation methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 12
    • 0003573107 scopus 로고    scopus 로고
    • Adaptive chains
    • Norwegian Computing Center, Oslo
    • Holden, L. (1998) Adaptive chains. Report SAND/11/98. Norwegian Computing Center, Oslo.
    • (1998) Report SAND/11/98
    • Holden, L.1
  • 13
    • 0036900109 scopus 로고    scopus 로고
    • On block updating in Markov random field models for disease mapping
    • Knorr-Held, L. and Rue, H. (2002) On block updating in Markov random field models for disease mapping. Scand. J. Statist., 29, 597-614.
    • (2002) Scand. J. Statist. , vol.29 , pp. 597-614
    • Knorr-Held, L.1    Rue, H.2
  • 14
    • 0442309554 scopus 로고    scopus 로고
    • The mutiple-try method and local optimization in Metropolis sampling
    • Liu, J. S., Liang, F. M. and Wong, W. H. (2000) The mutiple-try method and local optimization in Metropolis sampling. J. Am. Statist. Ass., 95, 121-134.
    • (2000) J. Am. Statist. Ass. , vol.95 , pp. 121-134
    • Liu, J.S.1    Liang, F.M.2    Wong, W.H.3
  • 16
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • Mengersen, K. L. and Tweedie, R. L. (1996) Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist., 24, 101-121.
    • (1996) Ann. Statist. , vol.24 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 18
    • 21444452127 scopus 로고    scopus 로고
    • Sampling from multimodal distributions using tempered transitions
    • Neal, R. M. (1996) Sampling from multimodal distributions using tempered transitions. Statist. Comput., 6, 353-366.
    • (1996) Statist. Comput. , vol.6 , pp. 353-366
    • Neal, R.M.1
  • 19
    • 0015730787 scopus 로고
    • Optimum Monte-Carlo sampling using Markov chains
    • Peskun, P. H. (1973) Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60, 607-612.
    • (1973) Biometrika , vol.60 , pp. 607-612
    • Peskun, P.H.1
  • 20
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • correction 60 (1998), 661
    • Richardson, S. and Green, P. J. (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Statist. Soc. B, 59, 731-792; correction, 60 (1998), 661.
    • (1997) J. R. Statist. Soc. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 21
    • 0000936678 scopus 로고    scopus 로고
    • Optimal scaling of discrete approximations to Langevin diffusions
    • Roberts, G. O. and Rosenthal, J. S. (1998) Optimal scaling of discrete approximations to Langevin diffusions. J. R. Statist. Soc. B, 60, 255-268.
    • (1998) J. R. Statist. Soc. B , vol.60 , pp. 255-268
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 22
    • 2442470429 scopus 로고    scopus 로고
    • Self regenerative Markov chain Monte Carlo with adaptation
    • Sahu, S. K. and Zhigljavsky, A. A. (2003) Self regenerative Markov chain Monte Carlo with adaptation. Bernoulli, 9, 395-422.
    • (2003) Bernoulli , vol.9 , pp. 395-422
    • Sahu, S.K.1    Zhigljavsky, A.A.2
  • 23
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • Smith, A. F. M. and Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Statist. Soc. B, 55, 3-23.
    • (1993) J. R. Statist. Soc. B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 24
    • 0345150895 scopus 로고    scopus 로고
    • Geometric and subgeometric convergence of diffusions with given stationary distribution, and their discretizations
    • University of Iowa, Iowa City
    • Stramer, O. and Tweedie, R. L. (1997) Geometric and subgeometric convergence of diffusions with given stationary distribution, and their discretizations. Technical Report. University of Iowa, Iowa City. (Available from www.statslab.cam.ac.uk/~mcmc/.)
    • (1997) Technical Report
    • Stramer, O.1    Tweedie, R.L.2
  • 25
    • 0033619197 scopus 로고    scopus 로고
    • Some adaptive Monte Carlo methods for Bayesian inference
    • Tierney, L. and Mira, A. (1999) Some adaptive Monte Carlo methods for Bayesian inference. Statist. Med., 18, 2507-2515.
    • (1999) Statist. Med. , vol.18 , pp. 2507-2515
    • Tierney, L.1    Mira, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.