메뉴 건너뛰기




Volumn 83, Issue 1-2, 2001, Pages 1-5

Analysis of the induced currents in finite size PCB ground planes

Author keywords

[No Author keywords available]

Indexed keywords


EID: 2442619236     PISSN: 09487921     EISSN: None     Source Type: Journal    
DOI: 10.1007/s002020000052     Document Type: Article
Times cited : (5)

References (11)
  • 3
    • 0033328195 scopus 로고    scopus 로고
    • Efficient Computation of Radiated Field from Finite-size Circuit Boards Including the Effect of Dielectric Layer
    • Seattle, USA
    • Leone M, Singer H (1999) Efficient Computation of Radiated Field from Finite-size Circuit Boards Including the Effect of Dielectric Layer. Proc. of IEEE 1999 Int. Symp. on EMC: 85-90. Seattle, USA
    • (1999) Proc. of IEEE 1999 Int. Symp. on EMC , pp. 85-90
    • Leone, M.1    Singer, H.2
  • 6
    • 0029305866 scopus 로고
    • Closed-Form Expressions for the Current Density on the Ground Plane of a Microstrip Line, with Application to Ground Plane Loss
    • Holloway CL, Kuester EF (1995) Closed-Form Expressions for the Current Density on the Ground Plane of a Microstrip Line, with Application to Ground Plane Loss. IEEE Trans. on MTT: 1204-1207
    • (1995) IEEE Trans. on MTT , pp. 1204-1207
    • Holloway, C.L.1    Kuester, E.F.2
  • 7
    • 0022114762 scopus 로고
    • Longitudinal and Transverse Current Distributions on Microstrip and their Closed-form Expressions
    • Kobayashi M (1985) Longitudinal and Transverse Current Distributions on Microstrip and Their Closed-form Expressions. IEEE Trans, on MTT: 784-788
    • (1985) IEEE Trans. on MTT , pp. 784-788
    • Kobayashi, M.1
  • 11
    • 0001071450 scopus 로고
    • On the Solution of a Class of Dual Integral Equations Occurring in Diffraction Problems
    • Eswaran K (1990) On the Solution of a Class of Dual Integral Equations Occurring in Diffraction Problems. Proc. Roy. Soc. London A429: 399-427
    • (1990) Proc. Roy. Soc. London , vol.A429 , pp. 399-427
    • Eswaran, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.