-
1
-
-
0022047205
-
A proposed standard set of problems to test finite element accuracy
-
MacNeal R.H., Harder R.L. A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1:1985;3-20.
-
(1985)
Finite Elem. Anal. Des.
, vol.1
, pp. 3-20
-
-
Macneal, R.H.1
Harder, R.L.2
-
2
-
-
0026911992
-
Large displacement formulation of three-dimensional beam element with cross-sectional warping
-
Dutta A., White D.W. Large displacement formulation of three-dimensional beam element with cross-sectional warping. Comput. Struct. 45:1992;9-24.
-
(1992)
Comput. Struct.
, vol.45
, pp. 9-24
-
-
Dutta, A.1
White, D.W.2
-
4
-
-
0033901476
-
A 14-node brick element, PN5X1, for plates and shells
-
Bassayya K., Shrinivasa U. A 14-node brick element, PN5X1, for plates and shells. Comput. Struct. 74:2000;167-178.
-
(2000)
Comput. Struct.
, vol.74
, pp. 167-178
-
-
Bassayya, K.1
Shrinivasa, U.2
-
5
-
-
0030102317
-
A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains
-
Betsch P., Gruttmann F., Stein E. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput. Meth. Appl. Mech. Eng. 130:1996;57-79.
-
(1996)
Comput. Meth. Appl. Mech. Eng.
, vol.130
, pp. 57-79
-
-
Betsch, P.1
Gruttmann, F.2
Stein, E.3
-
6
-
-
0002660405
-
An efficient 4-node 24 dof thick shell finite element with 5-point quadrature
-
Groenwold A.A., Stander N. An efficient 4-node 24 dof thick shell finite element with 5-point quadrature. Eng. Comput. 12:1995;723-747.
-
(1995)
Eng. Comput.
, vol.12
, pp. 723-747
-
-
Groenwold, A.A.1
Stander, N.2
-
7
-
-
0028547399
-
Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: Linearized kinematics
-
Ibrahimbegovic A., Frey F. Stress resultant geometrically non-linear shell theory with drilling rotations. Part III. linearized kinematics Int. J. Numer. Meth. Eng. 37:1994;3659-3683.
-
(1994)
Int. J. Numer. Meth. Eng.
, vol.37
, pp. 3659-3683
-
-
Ibrahimbegovic, A.1
Frey, F.2
-
8
-
-
0034320930
-
A four-node, shear-deformable shell element developed via explicit Kirchhoff constraints
-
Liu J., Riggs H.R., Tessler A. A four-node, shear-deformable shell element developed via explicit Kirchhoff constraints. Int. J. Numer. Meth. Eng. 49:2000;1065-1086.
-
(2000)
Int. J. Numer. Meth. Eng.
, vol.49
, pp. 1065-1086
-
-
Liu, J.1
Riggs, H.R.2
Tessler, A.3
-
9
-
-
0030246095
-
A new one-point quadrature, quadrilateral shell element with drilling degrees of freedom
-
Zhu Y., Zacharia T. A new one-point quadrature, quadrilateral shell element with drilling degrees of freedom. Comput. Meth. Appl. Mech. Eng. 136:1996;165-203.
-
(1996)
Comput. Meth. Appl. Mech. Eng.
, vol.136
, pp. 165-203
-
-
Zhu, Y.1
Zacharia, T.2
-
10
-
-
0034275285
-
Improvement on the 10-node tetrahedral element for three-dimensional problems
-
Lo S.H., Ling C. Improvement on the 10-node tetrahedral element for three-dimensional problems. Comput. Meth. Appl. Mech. Eng. 189:2000;961-974.
-
(2000)
Comput. Meth. Appl. Mech. Eng.
, vol.189
, pp. 961-974
-
-
Lo, S.H.1
Ling, C.2
-
11
-
-
0001717550
-
On finite deformation of space-curved beams
-
Reissner E. On finite deformation of space-curved beams. J. Appl. Math. Phys. 32:1981;734-744.
-
(1981)
J. Appl. Math. Phys.
, vol.32
, pp. 734-744
-
-
Reissner, E.1
-
12
-
-
0022060633
-
A finite strain beam formulation. The three-dimensional dynamic problem. Part I
-
Simo J.C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Meth. Appl. Mech. Eng. 49:1985;55-70.
-
(1985)
Comput. Meth. Appl. Mech. Eng.
, vol.49
, pp. 55-70
-
-
Simo, J.C.1
-
13
-
-
2442439260
-
A new finite element formulation of three-dimensional beam theory based on interpolation of curvature
-
Zupan D., Saje M. A new finite element formulation of three-dimensional beam theory based on interpolation of curvature. CMES: Comput. Model. Eng. Sci. 4(2):2003;301-318.
-
(2003)
CMES: Comput. Model. Eng. Sci.
, vol.4
, Issue.2
, pp. 301-318
-
-
Zupan, D.1
Saje, M.2
-
14
-
-
0038790302
-
The three-dimensional beam theory: Finite element formulation based on curvature
-
Zupan D., Saje M. The three-dimensional beam theory. finite element formulation based on curvature Comput. Struct. 81:2003;1875-1888.
-
(2003)
Comput. Struct.
, vol.81
, pp. 1875-1888
-
-
Zupan, D.1
Saje, M.2
|