-
1
-
-
0002499851
-
From critical exponents to blow-up rates for parabolic problems
-
M. Chlebik, M. Fila, From critical exponents to blow-up rates for parabolic problems, Rend. Mat. Appl. VII 19 (1999) 449-470.
-
(1999)
Rend. Mat. Appl. VII
, vol.19
, pp. 449-470
-
-
Chlebik, M.1
Fila, M.2
-
2
-
-
0030544718
-
Blow-up rates for parabolic systems
-
K. Deng, Blow-up rates for parabolic systems, Z. Angew. Math. Phys. 47 (1996) 132-143.
-
(1996)
Z. Angew. Math. Phys.
, vol.47
, pp. 132-143
-
-
Deng, K.1
-
3
-
-
0000491924
-
The blow-up rate for a semilinear parabolic system
-
M. Fila, P. Quittner, The blow-up rate for a semilinear parabolic system, J. Math. Anal. Appl. 238 (1999) 468-476.
-
(1999)
J. Math. Anal. Appl.
, vol.238
, pp. 468-476
-
-
Fila, M.1
Quittner, P.2
-
4
-
-
0038563718
-
The blow-up rate for semilinear parabolic problems on general domains
-
M. Fila, P. Souplet, The blow-up rate for semilinear parabolic problems on general domains, Nonlinear Differential Equations Appl. 8 (2001) 473-480.
-
(2001)
Nonlinear Differential Equations Appl.
, vol.8
, pp. 473-480
-
-
Fila, M.1
Souplet, P.2
-
6
-
-
0000546335
-
Blowup of positive solutions of semilinear heat equations
-
A. Friedman, B. Mcleod, Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985) 425-477.
-
(1985)
Indiana Univ. Math. J.
, vol.34
, pp. 425-477
-
-
Friedman, A.1
Mcleod, B.2
-
7
-
-
0000332576
-
Characterizing blowup using similarity variables
-
Y. Giga, R.V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987) 1-40.
-
(1987)
Indiana Univ. Math. J.
, vol.36
, pp. 1-40
-
-
Giga, Y.1
Kohn, R.V.2
-
8
-
-
0036575737
-
Blowup rate for heat equation in Lipschitz domains with nonlinear heat source terms on the boundary
-
J.S. Guo, B. Hu, Blowup rate for heat equation in Lipschitz domains with nonlinear heat source terms on the boundary, J. Math. Anal. Appl. 269 (2002) 28-49.
-
(2002)
J. Math. Anal. Appl.
, vol.269
, pp. 28-49
-
-
Guo, J.S.1
Hu, B.2
-
9
-
-
0000469761
-
On the nonexistence of global solutions of some semilinear parabolic equations
-
K. Hayakawa, On the nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad. Ser. 49 (1973) 503-525.
-
(1973)
Proc. Japan Acad. Ser.
, vol.49
, pp. 503-525
-
-
Hayakawa, K.1
-
10
-
-
0001091789
-
Remarks on the blowup estimate for solutions of the heat equation with a nonlinear boundary condition
-
B. Hu, Remarks on the blowup estimate for solutions of the heat equation with a nonlinear boundary condition, Differential Integral Equations 9 (1996) 891-901.
-
(1996)
Differential Integral Equations
, vol.9
, pp. 891-901
-
-
Hu, B.1
-
11
-
-
84968468748
-
The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition
-
B. Hu, H.M. Yin, The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. 346 (1994) 117-135.
-
(1994)
Trans. Amer. Math. Soc.
, vol.346
, pp. 117-135
-
-
Hu, B.1
Yin, H.M.2
-
12
-
-
0942289481
-
Blowup in a three-species cooperating model
-
K.I. Kim, Z. Lin, Blowup in a three-species cooperating model, Appl. Math. Lett. 17 (2004) 89-94.
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 89-94
-
-
Kim, K.I.1
Lin, Z.2
-
13
-
-
0003690985
-
-
American Mathematical Society, Providence, RI
-
O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.
-
(1968)
Linear and Quasilinear Equations of Parabolic Type
-
-
Ladyzenskaja, O.A.1
Solonnikov, V.A.2
Ural'ceva, N.N.3
-
14
-
-
0005885270
-
A blowup result for the critical exponent in cones
-
H.A. Levine, P. Meier, A blowup result for the critical exponent in cones, Israel J. Math. 67 (1989) 129-136.
-
(1989)
Israel J. Math.
, vol.67
, pp. 129-136
-
-
Levine, H.A.1
Meier, P.2
-
15
-
-
0042039416
-
Necessary and sufficient condition for the existence of positive solutions of certain cooperative system
-
Y. Lou, Necessary and sufficient condition for the existence of positive solutions of certain cooperative system, Nonlinear Anal. 26 (1996) 1019-1095.
-
(1996)
Nonlinear Anal.
, vol.26
, pp. 1019-1095
-
-
Lou, Y.1
-
16
-
-
0035392126
-
On diffusion-induced blowups in a mutualistic model
-
Y. Lou, T. Nagylaki, W.M. Ni, On diffusion-induced blowups in a mutualistic model, Nonlinear Anal. 45 (2001) 329-342.
-
(2001)
Nonlinear Anal.
, vol.45
, pp. 329-342
-
-
Lou, Y.1
Nagylaki, T.2
Ni, W.M.3
-
18
-
-
0032218494
-
Refined uniform estimates at blow-up and applications for nonlinear heat equations
-
F. Merle, H. Zaag, Refined uniform estimates at blow-up and applications for nonlinear heat equations, Geom. Funct. Anal. 8 (1998) 1043-1085.
-
(1998)
Geom. Funct. Anal.
, vol.8
, pp. 1043-1085
-
-
Merle, F.1
Zaag, H.2
-
19
-
-
0032338170
-
Optimal estimates for blowup rate and behavior for nonlinear heat equations
-
F. Merle, H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 (1998) 139-196.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 139-196
-
-
Merle, F.1
Zaag, H.2
-
21
-
-
0004014565
-
-
Prentice Hall, Englewood Cliffs, NJ
-
M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1967.
-
(1967)
Maximum Principles in Differential Equations
-
-
Protter, M.H.1
Weinberger, H.F.2
-
22
-
-
0033126123
-
An example of blowup produced by equal diffusions
-
H.F. Weinberger, An example of blowup produced by equal diffusions, J. Differential Equations 154 (1999) 225-237.
-
(1999)
J. Differential Equations
, vol.154
, pp. 225-237
-
-
Weinberger, H.F.1
-
23
-
-
48549114032
-
Single point blow-up for a semilinear initial value problem
-
F. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations 55 (1984) 204-224.
-
(1984)
J. Differential Equations
, vol.55
, pp. 204-224
-
-
Weissler, F.1
|