메뉴 건너뛰기




Volumn 37, Issue 7, 2004, Pages 1387-1405

A probabilistic spectral framework for grouping and segmentation

Author keywords

Graph spectral methods; Maximum likelihood; Motion segmentation; Perceptual grouping

Indexed keywords

ALGORITHMS; EIGENVALUES AND EIGENFUNCTIONS; MATHEMATICAL MODELS; MATRIX ALGEBRA; PARAMETER ESTIMATION; PROBABILITY DISTRIBUTIONS;

EID: 2442428183     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2003.10.017     Document Type: Article
Times cited : (23)

References (34)
  • 1
    • 0000963696 scopus 로고
    • Feature grouping by relocalisation of eigenvectors of the proximity matrix
    • G.L. Scott, H.C. Longuet-Higgins, Feature grouping by relocalisation of eigenvectors of the proximity matrix, in: British Machine Vision Conference, 1990, pp. 103-108.
    • (1990) British Machine Vision Conference , pp. 103-108
    • Scott, G.L.1    Longuet-Higgins, H.C.2
  • 2
    • 0032121920 scopus 로고    scopus 로고
    • Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors
    • Sarkar S. Boyer K.L. Quantitative measures of change based on feature organization: eigenvalues and eigenvectors Comput. Vision Image Understanding 71 1 1998 110-136
    • (1998) Comput. Vision Image Understanding , vol.71 , Issue.1 , pp. 110-136
    • Sarkar, S.1    Boyer, K.L.2
  • 3
    • 84957690614 scopus 로고    scopus 로고
    • Factorization approach to grouping
    • Freiburg, Germany
    • P. Perona, W.T. Freeman, Factorization approach to grouping, in: Proceedings of ECCV, Freiburg, Germany, 1998, pp. 655-670.
    • (1998) Proceedings of ECCV , pp. 655-670
    • Perona, P.1    Freeman, W.T.2
  • 6
    • 84898985184 scopus 로고    scopus 로고
    • Learning segmentation by random walks
    • MIT Press, Cambridge, MA
    • M. Meila, J. Shi, Learning segmentation by random walks, in: Advances in Neural Information Processing Systems, Vol. 13, MIT Press, Cambridge, MA, 2001, pp. 873-879.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 873-879
    • Meila, M.1    Shi, J.2
  • 7
    • 84898956621 scopus 로고    scopus 로고
    • Data clustering by markovian relaxation and the information bottleneck method
    • T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Cambridge, MA: MIT Press
    • Tishby N. Slonim N. Data clustering by markovian relaxation and the information bottleneck method Leen T.K. Dietterich T.G. Tresp V. Advances in Neural Information Processing Systems Vol. 13 2001 640-646 MIT Press Cambridge, MA
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 640-646
    • Tishby, N.1    Slonim, N.2
  • 13
    • 0009907075 scopus 로고
    • Feature grouping in a hierarchical probabilistic network
    • Dickson W. Feature grouping in a hierarchical probabilistic network Image Vision Comput. 9 1 1991 51-57
    • (1991) Image Vision Comput. , vol.9 , Issue.1 , pp. 51-57
    • Dickson, W.1
  • 14
    • 0027647563 scopus 로고
    • A bayesian multiple-hypothesis approach to edge grouping and contour segmentation
    • Cox I.J. Rehg J.M. Hingorani S. A bayesian multiple-hypothesis approach to edge grouping and contour segmentation Int. J. Comput. Vision 11 1 1993 5-24
    • (1993) Int. J. Comput. Vision , vol.11 , Issue.1 , pp. 5-24
    • Cox, I.J.1    Rehg, J.M.2    Hingorani, S.3
  • 15
    • 0031071623 scopus 로고    scopus 로고
    • Iterative curve organisation with the em algorithm
    • Leite J.A.F. Hancock E.R. Iterative curve organisation with the em algorithm Pattern Recognition Lett. 18 1997 143-155
    • (1997) Pattern Recognition Lett. , vol.18 , pp. 143-155
    • Leite, J.A.F.1    Hancock, E.R.2
  • 17
    • 0033204698 scopus 로고    scopus 로고
    • A probabilistic method for extracting chains of collinear segments
    • Crevier D. A probabilistic method for extracting chains of collinear segments Image Vision Comput. 76 1 1999 36-53
    • (1999) Image Vision Comput. , vol.76 , Issue.1 , pp. 36-53
    • Crevier, D.1
  • 18
    • 0031997849 scopus 로고    scopus 로고
    • A generic grouping algorithm and its quantitative analysis
    • Amir A. Lindenbaum M. A generic grouping algorithm and its quantitative analysis Trans. Pattern Anal. Mach. Intell. 20 2 1998 168-185
    • (1998) Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.2 , pp. 168-185
    • Amir, A.1    Lindenbaum, M.2
  • 21
    • 0024168435 scopus 로고
    • Structural saliency: The detection of globally salient structures using a locally connected network
    • Tarpon Springs, Florida, USA
    • A. Shashua, S. Ullman, Structural saliency: the detection of globally salient structures using a locally connected network, in: Proceedings of the 2nd International Conference in Computer Vision, Tarpon Springs, Florida, USA, 1988, pp. 321-327.
    • (1988) Proceedings of the 2nd International Conference in Computer Vision , pp. 321-327
    • Shashua, A.1    Ullman, S.2
  • 22
    • 0030263225 scopus 로고    scopus 로고
    • Inferring global perceptual contours from local features
    • Guy G. Medioni G. Inferring global perceptual contours from local features Int. J. Comput. Vision 20 1/2 1996 113-133
    • (1996) Int. J. Comput. Vision , vol.20 , Issue.1-2 , pp. 113-133
    • Guy, G.1    Medioni, G.2
  • 23
    • 0024715987 scopus 로고
    • Trace inference, curvature consistency and curve detection
    • Parent P. Zucker S. Trace inference, curvature consistency and curve detection IEEE Trans. Pattern Anal. Mach. Intell. 11 8 1989 823-839
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.8 , pp. 823-839
    • Parent, P.1    Zucker, S.2
  • 24
    • 0036682916 scopus 로고    scopus 로고
    • An expectation-maximisation framework for segmentation and grouping
    • Robles-Kelly A. Hancock E.R. An expectation-maximisation framework for segmentation and grouping Image and Vision Comput. 20 9-10 2002 725-738
    • (2002) Image and Vision Comput. , vol.20 , Issue.9-10 , pp. 725-738
    • Robles-Kelly, A.1    Hancock, E.R.2
  • 25
    • 0030487626 scopus 로고    scopus 로고
    • Considerations on computing real logarithms of matrices, hamiltonian logarithms and skew-symmetric logarithms
    • Dieci L. Considerations on computing real logarithms of matrices, hamiltonian logarithms and skew-symmetric logarithms Linear Algebra its Appl. 244 1996 35-54
    • (1996) Linear Algebra Its Appl. , vol.244 , pp. 35-54
    • Dieci, L.1
  • 26
    • 0001699291 scopus 로고
    • Training stochastic model recognition algorithms can lead to maximum mutual information estimation of parameters
    • Denver, Colorado, USA: MIT
    • J.S. Bridle, Training stochastic model recognition algorithms can lead to maximum mutual information estimation of parameters, in: NIPS, Vol. 2, Denver, Colorado, USA: MIT, 1990, pp. 211-217.
    • (1990) NIPS , vol.2 , pp. 211-217
    • Bridle, J.S.1
  • 27
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden markov models
    • Ghahramani Z. Jordan M. Factorial hidden markov models Mach. Learning 29 2-3 1997 245-273
    • (1997) Mach. Learning , vol.29 , Issue.2-3 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.2
  • 32
    • 0031569941 scopus 로고    scopus 로고
    • Stochastic completion fields: A neural model of illusory contour shape and salience
    • Williams L.R. Jacobs D.W. Stochastic completion fields: a neural model of illusory contour shape and salience Neural Comput. 9 4 1997 837-858
    • (1997) Neural Comput. , vol.9 , Issue.4 , pp. 837-858
    • Williams, L.R.1    Jacobs, D.W.2
  • 33
    • 0031648175 scopus 로고    scopus 로고
    • Algorithms for straight line fitting using k-means
    • Peng-Yeng Yin Algorithms for straight line fitting using k-means Pattern Recognition Lett. 19 1998 31-41
    • (1998) Pattern Recognition Lett. , vol.19 , pp. 31-41
    • Peng-Yeng Yin1
  • 34
    • 0025399304 scopus 로고
    • Motion estimation algorithm using inter-block correlation
    • Hsieh C.H. Lu P.C. Shyn J.S. Lu E.H. Motion estimation algorithm using inter-block correlation IEE Electron. Lett. 26 5 1990 276-277
    • (1990) IEE Electron. Lett. , vol.26 , Issue.5 , pp. 276-277
    • Hsieh, C.H.1    Lu, P.C.2    Shyn, J.S.3    Lu, E.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.