메뉴 건너뛰기




Volumn 2, Issue 11, 2005, Pages 1807-1815

Discrete particle swarm optimization for automating the design of multivariate autoregressive neural networks

Author keywords

Discrete Particle Swarm Optimization; Neural network structure optimization

Indexed keywords

FORECASTING; MATHEMATICAL MODELS; OPTIMIZATION; TIME SERIES ANALYSIS;

EID: 24344452610     PISSN: 17900832     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (25)
  • 2
    • 8444234276 scopus 로고    scopus 로고
    • An online algorithm for creating self-organizing neural networks
    • G. Leng, G. Prasad, and T.M. McGinnity, An online algorithm for creating self-organizing neural networks, Neural Networks, 17, 2004, pp.487-493.
    • (2004) Neural Networks , vol.17 , pp. 487-493
    • Leng, G.1    Prasad, G.2    McGinnity, T.M.3
  • 5
    • 0030176172 scopus 로고    scopus 로고
    • A Feedforward Neural Network with Function Shape Auto-tuning
    • C-T. Chen and W-D. Chang, A Feedforward Neural Network with Function Shape Auto-tuning, Neural Networks, Vol. 9, No. 4, 1996, pp.627-641.
    • (1996) Neural Networks , vol.9 , Issue.4 , pp. 627-641
    • Chen, C.-T.1    Chang, W.-D.2
  • 6
    • 9344232002 scopus 로고    scopus 로고
    • A new approach to self-organizing multi-layer fuzzy polynomial neural networks based on genetic optimization
    • S-K. Oh and W. Pedrycz, A new approach to self-organizing multi-layer fuzzy polynomial neural networks based on genetic optimization, Advanced engineering Infomatics, 18, 2004, pp. 29-39.
    • (2004) Advanced Engineering Infomatics , vol.18 , pp. 29-39
    • Oh, S.-K.1    Pedrycz, W.2
  • 8
    • 0038355079 scopus 로고    scopus 로고
    • Automatic basis selection techniques for RBF networks
    • A. Ghodi and D. Schuurmans, Automatic basis selection techniques for RBF networks, Neural Networks, 16, 2003, pp. 809-816.
    • (2003) Neural Networks , vol.16 , pp. 809-816
    • Ghodi, A.1    Schuurmans, D.2
  • 10
    • 33644806023 scopus 로고    scopus 로고
    • Automated Heuristic Growing of Neural Networks for Nonlinear Time Series Models
    • Montreal, Canada, in press
    • A. N. Kalos, Automated Heuristic Growing of Neural Networks for Nonlinear Time Series Models, IEEE International Joint Conference On Neural Networks, Montreal, Canada, 2005, in press.
    • (2005) IEEE International Joint Conference On Neural Networks
    • Kalos, A.N.1
  • 11
    • 0036887498 scopus 로고    scopus 로고
    • Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative networks)
    • N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perz, Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative networks), Neural Networks, 15, 2004, pp. 1259-1278.
    • (2004) Neural Networks , vol.15 , pp. 1259-1278
    • Garcia-Pedrajas, N.1    Hervas-Martinez, C.2    Munoz-Perz, J.3
  • 12
    • 3342961533 scopus 로고    scopus 로고
    • by Wolfram Research, The Neural Networks package is an add-on component to the standard Mathematica software and must be purchased separately
    • Mathematica 5.0 by Wolfram Research, http://www.wolfram.com. The Neural Networks package is an add-on component to the standard Mathematica software and must be purchased separately.
    • Mathematica 5.0
  • 17
    • 85156223398 scopus 로고    scopus 로고
    • A bound on error of cross validation using the approximation and estimation rates, with consequences for the training-test split
    • Cambridge, MA
    • M. Kearns, A bound on error of cross validation using the approximation and estimation rates, with consequences for the training-test split, Advances in Neural Information Processing Systems, Vol. 8, Cambridge, MA, 1996, pp. 183-189.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 183-189
    • Kearns, M.1
  • 20
    • 0003529238 scopus 로고
    • Beyond regression: New tools for prediction and analysis in the behavioral sciences
    • Ph.D. Thesis, Harvard University, Cambridge, MA
    • P. J. Werbos, Beyond regression: New tools for prediction and analysis in the behavioral sciences, Ph.D. Thesis, Harvard University, Cambridge, MA, 1974.
    • (1974)
    • Werbos, P.J.1
  • 21
    • 0029489722 scopus 로고
    • Overtraining, Regularization, and Searching for Minimum with Application to Neural Nets
    • J. Sjoberg and L. Ljung, Overtraining, Regularization, and Searching for Minimum with Application to Neural Nets, Int. J. Control, vol. 62, no. 6, 1995, pp. 1391-1407.
    • (1995) Int. J. Control , vol.62 , Issue.6 , pp. 1391-1407
    • Sjoberg, J.1    Ljung, L.2
  • 22
    • 0031380999 scopus 로고    scopus 로고
    • Separable Non-linear Least-squares minimization - Possible Improvements for Neural Net Fitting
    • Amelia Island Plantation, Florida, Sep. 24-26
    • J. Sjoberg and M. Viberg, Separable Non-linear Least-squares minimization - Possible Improvements for Neural Net Fitting, IEEE Workshop in Neural Networks for Signal Processing, Amelia Island Plantation, Florida, Sep. 24-26, 1997, pp. 345-354.
    • (1997) IEEE Workshop in Neural Networks for Signal Processing , pp. 345-354
    • Sjoberg, J.1    Viberg, M.2
  • 23
    • 24344464807 scopus 로고    scopus 로고
    • Electric Reliability Council of Texas (ERCOT)
    • Electric Reliability Council of Texas (ERCOT), http://www.ercot.com/.
  • 24
    • 24344490176 scopus 로고    scopus 로고
    • New York Mercantile Exchange (NYMEX)
    • New York Mercantile Exchange (NYMEX), http://www.nymex.com/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.