-
2
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Washington, D.C.
-
R. Agrawal, T. Imielinski, and A. Swami: Mining Association Rules between Sets of Items in Large Databases. In: Proc. 1993 ACM SIGMOD Intl. Conf. on Management of Data, Washington, D.C., (1993) 207-216
-
(1993)
Proc. 1993 ACM SIGMOD Intl. Conf. on Management of Data
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
4
-
-
84974693372
-
-
D. A. Zighed, H. J. Komorowski, J. M. Zytkow (eds.): Principles of Data Mining and Knowledge Discovery Lecture Notes in Computer Sciences. Springer-Verlag, Berlin Heidelberg New York
-
B. Barber and H. J. Hamilton: Algorithms for Mining Share Frequent Itemsets Containing Infrequent Subsets. In: D. A. Zighed, H. J. Komorowski, J. M. Zytkow (eds.): Principles of Data Mining and Knowledge Discovery. Lecture Notes in Computer Sciences, Vol. 1910. Springer-Verlag, Berlin Heidelberg New York (2000) 316-324
-
(2000)
Algorithms for Mining Share Frequent Itemsets Containing Infrequent Subsets
, vol.1910
, pp. 316-324
-
-
Barber, B.1
Hamilton, H.J.2
-
6
-
-
0037282574
-
Extracting share frequent itemsets with infrequent subsets
-
B. Barber and H. J. Hamilton: Extracting Share Frequent Itemsets with Infrequent Subsets. Data Mining and Knowledge Discovery 7 (2003) 153-185
-
(2003)
Data Mining and Knowledge Discovery
, vol.7
, pp. 153-185
-
-
Barber, B.1
Hamilton, H.J.2
-
7
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
Tucson, AZ
-
S. Brin, R. Motwani, J. D. Ullman, and S. Tsur: Dynamic Itemset Counting and Implication Rules for Market Basket Data. In: Proc. 1997 ACM SIGMOD Intl. Conf. on Management of Data, Tucson, AZ (1997) 255-264
-
(1997)
Proc. 1997 ACM SIGMOD Intl. Conf. on Management of Data
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.D.3
Tsur, S.4
-
9
-
-
84947734129
-
Share based measures for itemsets
-
H. J. Komorowski, J. M. Zytkow (eds.): Principles of Data Mining and Knowledge Discovery. Springer-Verlag, Berlin Heidelberg New York
-
C. L. Carter, H. J. Hamilton, and N. Cercone: Share Based Measures for Itemsets. In: H. J. Komorowski, J. M. Zytkow (eds.): Principles of Data Mining and Knowledge Discovery. Lecture Notes in Computer Science, Vol. 1263. Springer-Verlag, Berlin Heidelberg New York (1997) 14-24
-
(1997)
Lecture Notes in Computer Science
, vol.1263
, pp. 14-24
-
-
Carter, C.L.1
Hamilton, H.J.2
Cercone, N.3
-
12
-
-
2442449952
-
Mining frequent patterns without candidate generation: A frequent pattern tree approach
-
J. Han, J. Pei, Y. Yin, and R. Mao: Mining Frequent Patterns without Candidate Generation: A Frequent Pattern Tree Approach. Data Mining and Knowledge Discovery 8 (2004):53-87
-
(2004)
Data Mining and Knowledge Discovery
, vol.8
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
13
-
-
35048879230
-
Predicting itemset sales profiles with share measures and repeat-buying theory
-
J. Liu, Y. M. Cheung, H. Yin (eds.): Intelligent Data Engineering and Automated Learning. Springer-Verlag, Berlin Heidelberg New York
-
R. J. Hilderman: Predicting Itemset Sales Profiles with Share Measures and Repeat-Buying Theory. In: J. Liu, Y. M. Cheung, H. Yin (eds.): Intelligent Data Engineering and Automated Learning. Lecture Notes in Computer Science, Vol. 2690. Springer-Verlag, Berlin Heidelberg New York (2003) 789-795
-
(2003)
Lecture Notes in Computer Science
, vol.2690
, pp. 789-795
-
-
Hilderman, R.J.1
-
14
-
-
0003607233
-
Mining association rules from market basket data using share measures and characterized itemsets
-
R. J. Hilderman, C. L. Carter, H. J. Hamilton, and N. Cercone: Mining Association Rules from Market Basket Data using Share Measures and Characterized Itemsets,"Intl. Journal of Artificial Intelligence Tools 7 (1998) 189-220
-
(1998)
Intl. Journal of Artificial Intelligence Tools
, vol.7
, pp. 189-220
-
-
Hilderman, R.J.1
Carter, C.L.2
Hamilton, H.J.3
Cercone, N.4
-
15
-
-
0242709391
-
Mining frequent item sets by opportunistic projection
-
Alberta, Canada
-
J. Liu, Y. Pan, K. Wang, and J. Han: Mining Frequent Item Sets by Opportunistic Projection. In: Proc. 8th ACM-SIGKDD Intl. Conf. on Knowledge Discovery and Dada Mining, Alberta, Canada (2002) 229-238
-
(2002)
Proc. 8th ACM-SIGKDD Intl. Conf. on Knowledge Discovery and Dada Mining
, pp. 229-238
-
-
Liu, J.1
Pan, Y.2
Wang, K.3
Han, J.4
-
17
-
-
78149320187
-
H-Mine: Hyper-structure mining of frequent patterns in large databases
-
San Jose, CA
-
J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang: H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. In: Proc. 2001 IEEE Intl. Conf. on Data Mining, San Jose, CA (2001) 441-448
-
(2001)
Proc. 2001 IEEE Intl. Conf. on Data Mining
, pp. 441-448
-
-
Pei, J.1
Han, J.2
Lu, H.3
Nishio, S.4
Tang, S.5
Yang, D.6
-
18
-
-
33645616085
-
-
http://alme1.almaden.ibm.com/software/quest/Resources/datasets/syndata. html
-
-
-
-
19
-
-
33645622909
-
-
http://www.cse.cuhk.edu.hk/~kdd/data/IBM_VC++.zip
-
-
-
|