메뉴 건너뛰기




Volumn 79, Issue 1-2, 2005, Pages 123-128

GA-optimized backpropagation neural network with multi-parameterized gradients and applications to predicting plasma etch data

Author keywords

Genetic algorithm; Gradients; Model; Neural network; Plasma etching

Indexed keywords

METHANE; SILICON CARBIDE;

EID: 24044526487     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2005.06.002     Document Type: Article
Times cited : (15)

References (23)
  • 2
    • 0036827271 scopus 로고    scopus 로고
    • Fuzzy logic model of Langmuir Probe data
    • B. Kim, J.H. Park, and B.S. Kim Fuzzy logic model of Langmuir Probe data Comp. Chem. 26 2002 573 581
    • (2002) Comp. Chem. , vol.26 , pp. 573-581
    • Kim, B.1    Park, J.H.2    Kim, B.S.3
  • 3
    • 0031119009 scopus 로고    scopus 로고
    • Modeling of plasma etch systems using ordinary least squares, recurrent network, and projection to latent structure models
    • S. Bushman, T.F. Edgar, and I. Trachtenberg Modeling of plasma etch systems using ordinary least squares, recurrent network, and projection to latent structure models J. Electrochem. Soc. 144 1997 1379 1389
    • (1997) J. Electrochem. Soc. , vol.144 , pp. 1379-1389
    • Bushman, S.1    Edgar, T.F.2    Trachtenberg, I.3
  • 5
    • 0029375765 scopus 로고
    • CVD epitaxial deposition in a vertical barrel reactor-process modeling and optimization using neural network models
    • X.A. Wang, and R.L. Mahajan CVD epitaxial deposition in a vertical barrel reactor-process modeling and optimization using neural network models J. Electrochem. Soc. 142 1995 3123 3132
    • (1995) J. Electrochem. Soc. , vol.142 , pp. 3123-3132
    • Wang, X.A.1    Mahajan, R.L.2
  • 6
    • 0027592466 scopus 로고
    • Advantages of plasma etch modeling using neural networks over statistical techniques
    • C.D. Himmel, and G.S. May Advantages of plasma etch modeling using neural networks over statistical techniques IEEE Trans. Semicond. Manuf. 6 1993 103 111
    • (1993) IEEE Trans. Semicond. Manuf. , vol.6 , pp. 103-111
    • Himmel, C.D.1    May, G.S.2
  • 7
    • 0028370346 scopus 로고
    • An optimal neural network process model for plasma etching
    • B. Kim, and G.S. May An optimal neural network process model for plasma etching IEEE Trans. Semicond. Manuf. 7 1 1994 12 21
    • (1994) IEEE Trans. Semicond. Manuf. , vol.7 , Issue.1 , pp. 12-21
    • Kim, B.1    May, G.S.2
  • 8
    • 0035897276 scopus 로고    scopus 로고
    • An optimal neural network plasma model: A case study
    • B. Kim, and S. Park An optimal neural network plasma model: a case study Chemometr. Intell. Lab. Syst. 56 2001 39 50
    • (2001) Chemometr. Intell. Lab. Syst. , vol.56 , pp. 39-50
    • Kim, B.1    Park, S.2
  • 12
    • 0033682112 scopus 로고    scopus 로고
    • Infrared spectral classification with artificial neural networks and classical pattern recognition
    • H.T. Mayfield, D. Eastwood, and L.W. Burggraf Infrared spectral classification with artificial neural networks and classical pattern recognition Chem. Biol. Sens. 2000 54 65
    • (2000) Chem. Biol. Sens. , pp. 54-65
    • Mayfield, H.T.1    Eastwood, D.2    Burggraf, L.W.3
  • 13
    • 0343293873 scopus 로고    scopus 로고
    • Capability of feed-forward neural networks for a chemical evaluation of sediments with diffuse reflectance spectroscopy
    • Uelhoven, and B. Schutt Capability of feed-forward neural networks for a chemical evaluation of sediments with diffuse reflectance spectroscopy Chemometr. Intell. Lab. Syst. 51 1 2000 9 22
    • (2000) Chemometr. Intell. Lab. Syst. , vol.51 , Issue.1 , pp. 9-22
    • Uelhoven1    Schutt, B.2
  • 15
    • 0031223354 scopus 로고    scopus 로고
    • Neural network methodologies for mass spectra recognition
    • I. Belic, and L. Gyergyek Neural network methodologies for mass spectra recognition Vacuum 48 7-9 1997
    • (1997) Vacuum , vol.48 , Issue.7-9
    • Belic, I.1    Gyergyek, L.2
  • 16
    • 0031372577 scopus 로고    scopus 로고
    • Interpretation of raman spectra of nitro-containing explosive materials-Part II-The implementation of neural, fuzzy, and statistical models for unsupervised pattern recognition
    • N.W. Daniel, I.R. Lewis, and P.R. Griffiths Interpretation of raman spectra of nitro-containing explosive materials-Part II-The implementation of neural, fuzzy, and statistical models for unsupervised pattern recognition Appl. Spectrosc. 51 12 1997 1868 1879
    • (1997) Appl. Spectrosc. , vol.51 , Issue.12 , pp. 1868-1879
    • Daniel, N.W.1    Lewis, I.R.2    Griffiths, P.R.3
  • 17
    • 0026254768 scopus 로고
    • A generalized regression neural network
    • D.F. Specht A generalized regression neural network IEEE Trans. Neural Netw. 2 1991 568 576
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 18
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, and P.M. Grant Orthogonal least squares learning algorithm for radial basis function networks IEEE Trans. Neural Netw. 2 1991 302 309
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 20
    • 0000052522 scopus 로고    scopus 로고
    • Temperature-constrained cascade correlation networks
    • P.D. Harrington Temperature-constrained cascade correlation networks Anal. Chem. 70 1998 1297 1306
    • (1998) Anal. Chem. , vol.70 , pp. 1297-1306
    • Harrington, P.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.