-
1
-
-
0001578518
-
A learning algorithm for boltzmann machines
-
Ackley, D., Hinton, G., & Sejnowski, T. (1985). A learning algorithm for boltzmann machines. Cognitive Science, 9, 147-169.
-
(1985)
Cognitive Science
, vol.9
, pp. 147-169
-
-
Ackley, D.1
Hinton, G.2
Sejnowski, T.3
-
4
-
-
24044536518
-
Mean-field theory for stochastic connectionist networks
-
Department of Computer Science and Automation, Indian Institute of Science
-
Bhattacharyya, C., & Keerthi, S. S. (1999a). Mean-field theory for stochastic connectionist networks. Tech. rep. IISc-CSA-99-03, Department of Computer Science and Automation, Indian Institute of Science.
-
(1999)
Tech. Rep. IISc-CSA-99-03
-
-
Bhattacharyya, C.1
Keerthi, S.S.2
-
6
-
-
0034711904
-
Information geometry and plefka's mean-field theory
-
Bhattacharyya, C., & Keerthi, S. S. (2000). Information geometry and plefka's mean-field theory. J. Phys. A: Math. Gen., 55(7), 1307-1312.
-
(2000)
J. Phys. A: Math. Gen.
, vol.55
, Issue.7
, pp. 1307-1312
-
-
Bhattacharyya, C.1
Keerthi, S.S.2
-
7
-
-
0042761283
-
Approximating posterior distributions in belief networks using mixtures
-
Jordan, M. I., Kearns, M. J., & Solla, S. (Eds.), MIT press
-
Bishop, M. C., Lawrence, N., Jaakkola, T., & Jordan, M. I. (1997). Approximating posterior distributions in belief networks using mixtures. In Jordan, M. I., Kearns, M. J., & Solla, S. (Eds.), Advances in Neural Information Processing Systems 10. MIT press.
-
(1997)
Advances in Neural Information Processing Systems 10
-
-
Bishop, M.C.1
Lawrence, N.2
Jaakkola, T.3
Jordan, M.I.4
-
8
-
-
0021518209
-
Stochastic relaxation,gibbs distribution,and the bayesian restoration of images
-
Geman, S., & Geman, D. (1984). Stochastic relaxation,gibbs distribution,and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
9
-
-
0042138305
-
Model independent mean-field theory as a local method for approximate propagation of information
-
Haft, M., Hofmann, R., & Tresp, V. (1999). Model independent mean-field theory as a local method for approximate propagation of information. Network: Computation in Neural Systems, 10(1), 93-105.
-
(1999)
Network: Computation in Neural Systems
, vol.10
, Issue.1
, pp. 93-105
-
-
Haft, M.1
Hofmann, R.2
Tresp, V.3
-
10
-
-
0029652445
-
The wake sleep algorithm for unsupervised neural networks
-
Hinton, G. E., Dayan, P., Frey, B., & Neal, R. (1995). The wake sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.3
Neal, R.4
-
11
-
-
0006448878
-
Bounded conditioning: Flexible inference for decisions under scarce resources
-
Mountain View, CA: Assosciation for UAI
-
Horvitz, E. J., Suermondt, H. J., & Cooper, G. (1989). Bounded conditioning: Flexible inference for decisions under scarce resources. In Conference on Uncertainity in Artificial Intelligence: Proceedings of the fifth conference. Mountain View, CA: Assosciation for UAI.
-
(1989)
Conference on Uncertainity in Artificial Intelligence: Proceedings of the Fifth Conference
-
-
Horvitz, E.J.1
Suermondt, H.J.2
Cooper, G.3
-
13
-
-
0001022491
-
Blocking gibbs sampling in very large probabilistic expert systems
-
Real World Applications of Uncertain Reasoning
-
Jensen, C., Kong, A., & Kjaerulff, U. (1995). Blocking gibbs sampling in very large probabilistic expert systems. In International Journal of Human Computer Studies. Special issue on Real World Applications of Uncertain Reasoning.
-
(1995)
International Journal of Human Computer Studies
, Issue.SPEC. ISSUE
-
-
Jensen, C.1
Kong, A.2
Kjaerulff, U.3
-
14
-
-
0000935895
-
An introduction to variational methods for graphical models
-
Jordan, M. I. (Ed.)
-
Jordan, M. I., Ghahramani, Z., Jaakkola, S. T., & Saul, L. (1997). An introduction to variational methods for graphical models. In Jordan, M. I. (Ed.), Learning in Graphical models.
-
(1997)
Learning in Graphical Models
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, S.T.3
Saul, L.4
-
15
-
-
84899012889
-
Boltzmann machine learning using mean field theory and linear response correction
-
Jordan, M. I., Kearns, M. J., & Solla, S. A. (Eds.), MIT press
-
Kappen, H. J., & Rodriguez, F. B. (1998). Boltzmann machine learning using mean field theory and linear response correction. In Jordan, M. I., Kearns, M. J., & Solla, S. A. (Eds.), Advances in Neural Information Processing Systems 10. MIT press.
-
(1998)
Advances in Neural Information Processing Systems 10
-
-
Kappen, H.J.1
Rodriguez, F.B.2
-
17
-
-
24044494162
-
Reduction of computational complexity in bayesian networksthrough removal of weak dependences
-
San Mateo, CA: Morgan Kaufmann
-
Kjaerulff, U. (1998). Reduction of computational complexity in bayesian networksthrough removal of weak dependences. In Uncertainity and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.
-
(1998)
Uncertainity and Artificial Intelligence: Proceedings of the Tenth Conference
-
-
Kjaerulff, U.1
-
18
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
Lauritzen, S., & Spiegelhalter, D. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society B, 50, 157-224.
-
(1988)
Journal of the Royal Statistical Society B
, vol.50
, pp. 157-224
-
-
Lauritzen, S.1
Spiegelhalter, D.2
-
19
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-118.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 71-118
-
-
Neal, R.1
-
22
-
-
0001406440
-
A mean field theory learning algorithm for neural networks
-
Peterson, C., & Anderson, J. R. (1987). A mean field theory learning algorithm for neural networks. Complex Systems, 1, 995-1019.
-
(1987)
Complex Systems
, vol.1
, pp. 995-1019
-
-
Peterson, C.1
Anderson, J.R.2
-
23
-
-
0001051762
-
Convergence condition of the tap equation for the infinite-ranged ising glass model
-
Plefka, T. (1982). Convergence condition of the tap equation for the infinite-ranged ising glass model. J. Phys. A: Math. Gen., 15(6), 1971-1978.
-
(1982)
J. Phys. A: Math. Gen.
, vol.15
, Issue.6
, pp. 1971-1978
-
-
Plefka, T.1
-
25
-
-
0003214942
-
Exploiting tractable substructures in intractable networks
-
Touretzky, D. S., Mozer, M. C., & Hasselmo, M. E. (Eds.), MIT press
-
Saul, L., & Jordan, M. I. (1996). Exploiting tractable substructures in intractable networks. In Touretzky, D. S., Mozer, M. C., & Hasselmo, M. E. (Eds.), Advances in Neural Information Processing Systems 8. MIT press.
-
(1996)
Advances in Neural Information Processing Systems 8
-
-
Saul, L.1
Jordan, M.I.2
-
26
-
-
24044460977
-
Attractor dynamics in feedforward networks
-
In press
-
Saul, L., & Jordan, M. I. (1999). Attractor dynamics in feedforward networks. Neural Computation. In press.
-
(1999)
Neural Computation
-
-
Saul, L.1
Jordan, M.I.2
-
27
-
-
0029679189
-
Mean field theory for sigmoid belief networks
-
Saul, L. K., Jaakkola, T., & Jordan, M. I. (1996). Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research, 4, 61-76.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 61-76
-
-
Saul, L.K.1
Jaakkola, T.2
Jordan, M.I.3
-
28
-
-
0026056182
-
Probabilistic diagnosis using a reformulation of the internist-1/qmr knowledge base
-
Shwe, M. A., & Others (1991). Probabilistic diagnosis using a reformulation of the internist-1/qmr knowledge base. Meth. Inform. Med., 30.
-
(1991)
Meth. Inform. Med.
, vol.30
-
-
Shwe, M.A.1
|