메뉴 건너뛰기




Volumn 10, Issue 1, 1999, Pages 93-105

Model-independent mean-field theory as a local method for approximate propagation of information

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CHILD; DECISION SUPPORT SYSTEM; DIFFERENTIAL DIAGNOSIS; HUMAN; INFORMATION SCIENCE; PROBABILITY;

EID: 0042138305     PISSN: 0954898X     EISSN: None     Source Type: Journal    
DOI: 10.1088/0954-898X_10_1_006     Document Type: Article
Times cited : (13)

References (26)
  • 2
    • 0025401005 scopus 로고
    • Computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper G 1990 Computational complexity of probabilistic inference using Bayesian belief networks Artificial Intell. 42 393-405
    • (1990) Artificial Intell. , vol.42 , pp. 393-405
    • Cooper, G.1
  • 5
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • Peterson C and Anderson J R 1987 A mean field theory learning algorithm for neural networks Complex Systems 1 995-1019
    • (1987) Complex Systems , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 6
    • 0024901271 scopus 로고
    • Explorations of the mean field theory learning algorithm
    • Peterson C and Hartman E 1989 Explorations of the mean field theory learning algorithm Neural Networks 2 475-94
    • (1989) Neural Networks , vol.2 , pp. 475-494
    • Peterson, C.1    Hartman, E.2
  • 8
    • 0042260130 scopus 로고    scopus 로고
    • Robust 'topological' codes by keeping control of internal redundancy
    • Haft M 1998 Robust 'topological' codes by keeping control of internal redundancy Phys. Rev. Lett. 81 4016-9
    • (1998) Phys. Rev. Lett. , vol.81 , pp. 4016-4019
    • Haft, M.1
  • 9
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen S L and Spiegelhalter D J 1988 Local computations with probabilities on graphical structures and their application to expert systems J. R. Stat. Soc. B 50 154-227
    • (1988) J. R. Stat. Soc. B , vol.50 , pp. 154-227
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 10
    • 0001698979 scopus 로고
    • Bayesian updating in causal probabilistic networks by local computations
    • Jensen F V, Lauritzen S L and Olsen K G 1990 Bayesian updating in causal probabilistic networks by local computations Comput. Stat. Q. 4 269-82
    • (1990) Comput. Stat. Q. , vol.4 , pp. 269-282
    • Jensen, F.V.1    Lauritzen, S.L.2    Olsen, K.G.3
  • 12
    • 85156241149 scopus 로고
    • Exploiting tractable substructures in untractable networks
    • ed D Touretzky, M Moser and M Hasselmo (Cambridge, MA: MIT Press)
    • Saul L K and Jordan M I 1995 Exploiting tractable substructures in untractable networks Advances in Neural Information Processing Systems (Proc. 1995 Conf.) ed D Touretzky, M Moser and M Hasselmo (Cambridge, MA: MIT Press) pp 486-92
    • (1995) Advances in Neural Information Processing Systems (Proc. 1995 Conf.) , pp. 486-492
    • Saul, L.K.1    Jordan, M.I.2
  • 17
    • 0001837853 scopus 로고    scopus 로고
    • Improving the mean field approximation via the use of mixture distributions
    • ed M I Jordan (Dordrecht: Kluwer)
    • Jaakkola T S and Jordan M I 1998 Improving the mean field approximation via the use of mixture distributions Learning in Graphical Models ed M I Jordan (Dordrecht: Kluwer) pp 163-73
    • (1998) Learning in Graphical Models , pp. 163-173
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 23
    • 0002962208 scopus 로고
    • Collective phenomena in neural networks
    • ed E Domany, J L van Hemmen and K Schulten (Berlin: Springer)
    • van Hemmen J L and Kühn R 1991 Collective phenomena in neural networks Models of Neural Networks I ed E Domany, J L van Hemmen and K Schulten (Berlin: Springer) pp 1-113
    • (1991) Models of Neural Networks I , vol.1 , pp. 1-113
    • Van Hemmen, J.L.1    Kühn, R.2
  • 26
    • 0032603958 scopus 로고    scopus 로고
    • Variational learning in non-linear Gaussian belief networks
    • Frey B J and Hinton G E 1999 Variational learning in non-linear Gaussian belief networks Neural Comput. 11 193-213 (available at http://www.cs.utoronto.ca/frey)
    • (1999) Neural Comput. , vol.11 , pp. 193-213
    • Frey, B.J.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.