-
1
-
-
0029723580
-
The complexity of matrix rank and feasible systems of linear equations
-
E. Allender, R. Beals, M. Ogihara, The Complexity of Matrix Rank and Feasible Systems of Linear Equations, ACM STOC'96, 1996, pp. 161-167.
-
(1996)
ACM STOC'96
, pp. 161-167
-
-
Allender, E.1
Beals, R.2
Ogihara, M.3
-
3
-
-
0040304685
-
Lower bounds for monotone span programs
-
A. Beimel, A. Gal, M. Paterson, Lower Bounds for Monotone Span Programs, Computational Complexity, 6, 1996/1997, pp. 29-45.
-
(1996)
Computational Complexity
, vol.6
, pp. 29-45
-
-
Beimel, A.1
Gal, A.2
Paterson, M.3
-
4
-
-
0345412672
-
Separating the power of monotone span programs over different fields
-
A. Beimel, E. Weinreb, Separating the Power of Monotone Span Programs over Different Fields, FOCS'03, 2003, pp. 428-437.
-
(2003)
FOCS'03
, pp. 428-437
-
-
Beimel, A.1
Weinreb, E.2
-
5
-
-
0040113669
-
Superpolynomial lower bounds for monotone span programs
-
L. Babai, A. Gal, A. Wigderson, Superpolynomial Lower Bounds for Monotone Span Programs, Combinatorica 19 (3), 1999, pp. 301-319.
-
(1999)
Combinatorica
, vol.19
, Issue.3
, pp. 301-319
-
-
Babai, L.1
Gal, A.2
Wigderson, A.3
-
7
-
-
0004109958
-
Structure and importance of the logspace-mod class
-
G. Buntrock, C. Damm, H. Hertrampf, C. Meinel, Structure and Importance of the Logspace-mod Class, Math. Systems Theory 25, 1992, pp. 223-237.
-
(1992)
Math. Systems Theory
, vol.25
, pp. 223-237
-
-
Buntrock, G.1
Damm, C.2
Hertrampf, H.3
Meinel, C.4
-
8
-
-
84948975649
-
General secure multi-party computation from any linear secret sharing scheme
-
Springer-Verlag LNCS 1807
-
R. Gramer, I. Damgard, U. Maurer, General Secure Multi-Party Computation from any Linear Secret Sharing Scheme, EUROCRYPT'2000, Springer-Verlag LNCS 1807, 2000, pp. 316-334.
-
(2000)
EUROCRYPT'2000
, pp. 316-334
-
-
Gramer, R.1
Damgard, I.2
Maurer, U.3
-
9
-
-
84937432976
-
Optimal black-box secret sharing over arbitrary abelian groups
-
Springer-Verlag LNCS 2442
-
R. Cramer, S. Fehr, Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups, CRYPTO 2002, Springer-Verlag LNCS 2442, 2002, pp. 272-287.
-
(2002)
CRYPTO 2002
, pp. 272-287
-
-
Cramer, R.1
Fehr, S.2
-
12
-
-
0037699040
-
A characterization of span program size and improved lower bounds for monotone span programs
-
A. Gal, A Characterization of Span Program Size and Improved Lower Bounds for Monotone Span Programs, Computational Complexity, Vol. 10, No. 4, 2001, pp. 277-296.
-
(2001)
Computational Complexity
, vol.10
, Issue.4
, pp. 277-296
-
-
Gal, A.1
-
13
-
-
0042468042
-
Monotone complexity and the rank of matrices
-
A. Gal, P. Pudlak, Monotone Complexity and the Rank of Matrices, Inform. Proc. Lett. 87, 2003, pp. 321-326.
-
(2003)
Inform. Proc. Lett.
, vol.87
, pp. 321-326
-
-
Gal, A.1
Pudlak, P.2
-
15
-
-
33645393507
-
Applying general access structure to metering schemes
-
Cryptology ePrint Archive: Report 2002/102
-
V. Nikov, S. Nikova, B. Preneel, J. Vandewalle, Applying General Access Structure to Metering Schemes, WCC 2003, Cryptology ePrint Archive: Report 2002/102.
-
WCC 2003
-
-
Nikov, V.1
Nikova, S.2
Preneel, B.3
Vandewalle, J.4
-
16
-
-
0142008281
-
Upper bound for the size of monotone span programs
-
V. Nikov, S. Nikova, B. Preneel, Upper Bound for the Size of Monotone Span Programs, ISIT 2003, 2003, pp. 284.
-
(2003)
ISIT 2003
, pp. 284
-
-
Nikov, V.1
Nikova, S.2
Preneel, B.3
-
17
-
-
0040468448
-
Algebraic models of computations and interpolation for algebraic proof systems
-
DIMACS Series in Discrete Mathematics and Theoretical Computer Science
-
P. Pudlak, J. Sgall, Algebraic Models of Computations and Interpolation for Algebraic Proof Systems, Proof Complexity and Feasible Arithmetic, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 39, 1998, pp. 279-295.
-
(1998)
Proof Complexity and Feasible Arithmetic
, vol.39
, pp. 279-295
-
-
Pudlak, P.1
Sgall, J.2
-
18
-
-
0018545449
-
How to share a secret
-
A. Shamir, How to Share a Secret, Commun. ACM, 22, 1979, pp. 612-613.
-
(1979)
Commun. ACM
, vol.22
, pp. 612-613
-
-
Shamir, A.1
|