-
1
-
-
0033478153
-
The complexity of matrix rank and feasible systems of linear equations
-
E. ALLENDRR, R. BEALS & M. OGIHARA (1999). The complexity of matrix rank and feasible systems of linear equations. Comput. Complexity 8, 99-126.
-
(1999)
Comput. Complexity
, vol.8
, pp. 99-126
-
-
Allendrr, E.1
Beals, R.2
Ogihara, M.3
-
2
-
-
0000391239
-
Explicit constructions of exponential sized families of κc-independent sets
-
N. ALON (1986). Explicit constructions of exponential sized families of κc-independent sets. Discrete Math. 58, 191-193.
-
(1986)
Discrete Math.
, vol.58
, pp. 191-193
-
-
Alon, N.1
-
3
-
-
0346879589
-
-
Personal communication
-
N. ALON (1996). Personal communication.
-
(1996)
-
-
Alon, N.1
-
4
-
-
51249171493
-
The monotone circuit complexity of Boolean functions
-
N. ALON & R. BOPPANA (1987). The monotone circuit complexity of Boolean functions. Combinatorica 7, 1-22.
-
(1987)
Combinatorica
, vol.7
, pp. 1-22
-
-
Alon, N.1
Boppana, R.2
-
6
-
-
0013281657
-
On a method for obtaining lower bounds for the complexity of individual monotone functions
-
A. ANDREEV (1985). On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl. 31, 530-534.
-
(1985)
Soviet Math. Dokl.
, vol.31
, pp. 530-534
-
-
Andreev, A.1
-
7
-
-
0040350285
-
Approximating probability distributions using small sample spaces
-
Y. AZAR, R. MOTWANI & J. NAOR (1998). Approximating probability distributions using small sample spaces. Combinatorica 18, 151-171.
-
(1998)
Combinatorica
, vol.18
, pp. 151-171
-
-
Azar, Y.1
Motwani, R.2
Naor, J.3
-
8
-
-
0029711425
-
Extremal bipartite graphs and superpolynomial lower bounds for monotone span programs
-
Philadelphia, PA
-
L. BABAI, A. GÁL, J. KOLLÁR. L. RÓNYAI, T. SZABÓ &r A. WIGDERSON (1996). Extremal bipartite graphs and superpolynomial lower bounds for monotone span programs. In Proc. 28th Annual ACM Symposium on the Theory of Computing (Philadelphia, PA), 603-611.
-
(1996)
Proc. 28th Annual ACM Symposium on the Theory of Computing
, pp. 603-611
-
-
Babai, L.1
Gál, A.2
Kollár, J.3
Rónyai, L.4
Szabó, T.5
Wigderson, A.6
-
9
-
-
0040113669
-
Superpolynomial lower bounds for monotone span programs
-
L. BABAI, A. GÁL, & A. WIGDERSON (1999). Superpolynomial lower bounds for monotone span programs. Combinatorica 19, 301-319.
-
(1999)
Combinatorica
, vol.19
, pp. 301-319
-
-
Babai, L.1
Gál, A.2
Wigderson, A.3
-
10
-
-
0032597116
-
On arithmetic branching programs
-
A. BEIMEL & A. GÁL (1999). On arithmetic branching programs. J. Comput. System Sci. 59, 195-220.
-
(1999)
J. Comput. System Sci.
, vol.59
, pp. 195-220
-
-
Beimel, A.1
Gál, A.2
-
13
-
-
0040344819
-
Graphs which contain all small graphs
-
B. BOLLOBÁS & A. THOMASON (1981). Graphs which contain all small graphs. European J. Combin 2, 13-15.
-
(1981)
European J. Combin
, vol.2
, pp. 13-15
-
-
Bollobás, B.1
Thomason, A.2
-
15
-
-
0004020725
-
The dealer's random bits in perfect secret sharing schemes
-
L. CSIRMAZ (1996). The dealer's random bits in perfect secret sharing schemes. Studia Sci. Math. Hungar. 32, 429-437.
-
(1996)
Studia Sci. Math. Hungar.
, vol.32
, pp. 429-437
-
-
Csirmaz, L.1
-
16
-
-
0026837701
-
A simple lower bound for monotone clique using a communication game
-
M. GOLDMANN & J. HÅSTAD (1992). A simple lower bound for monotone clique using a communication game. Inform. Process. Lett. 41, 221-226.
-
(1992)
Inform. Process. Lett.
, vol.41
, pp. 221-226
-
-
Goldmann, M.1
Håstad, J.2
-
17
-
-
0040605344
-
A constructive solution to a tournament problem
-
R. L. GRAHAM & J. H. SPENCER (1971). A constructive solution to a tournament problem. Canad. Math. Bull. 14, 45-48.
-
(1971)
Canad. Math. Bull.
, vol.14
, pp. 45-48
-
-
Graham, R.L.1
Spencer, J.H.2
-
18
-
-
0006838028
-
Monotone complexity
-
Boolean Function Complexity, M. Paterson (ed.), Cambridge Univ. Press
-
M. GRIGNI & M. SIPSER (1992). Monotone complexity. In Boolean Function Complexity, M. Paterson (ed.), London Math. Soc. Lecture Note Ser. 169, Cambridge Univ. Press, 57-75.
-
(1992)
London Math. Soc. Lecture Note Ser.
, vol.169
, pp. 57-75
-
-
Grigni, M.1
Sipser, M.2
-
20
-
-
0004003953
-
The shrinkage exponent is 2
-
J. HÅSTAD (1998). The shrinkage exponent is 2. SIAM J. Comput. 27, 48-64.
-
(1998)
SIAM J. Comput.
, vol.27
, pp. 48-64
-
-
Håstad, J.1
-
21
-
-
0001345658
-
Monotone circuits for connectivity require super-logarithmic depth
-
M. KARCHMER & A. WIGDERSON (1990). Monotone circuits for connectivity require super-logarithmic depth. SIAM J. Discrete Math. 3, 255-265.
-
(1990)
SIAM J. Discrete Math.
, vol.3
, pp. 255-265
-
-
Karchmer, M.1
Wigderson, A.2
-
23
-
-
34250466566
-
Methods of determining lower bounds for the complexity of II-schemes
-
V. M. KHRAPCHENKO (1972). Methods of determining lower bounds for the complexity of II-schemes. Math. Notes Acad. Sci. USSR 10, 474-479.
-
(1972)
Math. Notes Acad. Sci. USSR
, vol.10
, pp. 474-479
-
-
Khrapchenko, V.M.1
-
24
-
-
0000294926
-
Families of κ-independent sets
-
D. J. KLEITMAN & J. SPENCER (1973). Families of κ-independent sets. Discrete Math. 6, 255-262.
-
(1973)
Discrete Math.
, vol.6
, pp. 255-262
-
-
Kleitman, D.J.1
Spencer, J.2
-
28
-
-
0027641832
-
Small-bias probability spaces: Efficient constructions and applications
-
J. NAOR & M. NAOR (1993). Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput. 22, 838-856.
-
(1993)
SIAM J. Comput.
, vol.22
, pp. 838-856
-
-
Naor, J.1
Naor, M.2
-
30
-
-
0040468448
-
Algebraic models of computation and interpolation for algebraic proof systems
-
Proof Complexity and Feasible Arithmetic
-
P. PUDLÁK & J. SGALL (1996). Algebraic models of computation and interpolation for algebraic proof systems. In Proof Complexity and Feasible Arithmetic, DIMACS Ser. 39, 279-295.
-
(1996)
DIMACS Ser.
, vol.39
, pp. 279-295
-
-
Pudlák, P.1
Sgall, J.2
-
31
-
-
0026888974
-
Monotone circuits for matching require linear depth
-
R. RAZ & A. WIGDERSON (1992). Monotone circuits for matching require linear depth. J. Assoc. Comput. Mach. 39, 736-744.
-
(1992)
J. Assoc. Comput. Mach.
, vol.39
, pp. 736-744
-
-
Raz, R.1
Wigderson, A.2
-
32
-
-
0037909270
-
A lower bound on the monotone network complexity of the logical permanent
-
in Russian
-
A. A. RAZBOROV (1985a). A lower bound on the monotone network complexity of the logical permanent. Mat. Zametki 37, 887-900 (in Russian).
-
(1985)
Mat. Zametki
, vol.37
, pp. 887-900
-
-
Razborov, A.A.1
-
33
-
-
0000574714
-
Lower bounds for the monotone complexity of some Boolean functions
-
A. A. RAZBOROV (1985b). Lower bounds for the monotone complexity of some Boolean functions. Soviet Math. Dokl. 31, 354-357.
-
(1985)
Soviet Math. Dokl.
, vol.31
, pp. 354-357
-
-
Razborov, A.A.1
-
35
-
-
0011933971
-
Applications of matrix methods to the theory of lower bounds in computational complexity
-
A. A. RAZBOROV (1990). Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica 10, 81-93.
-
(1990)
Combinatorica
, vol.10
, pp. 81-93
-
-
Razborov, A.A.1
-
36
-
-
0011958653
-
On submodular complexity measures
-
Boolean Function Complexity, M. Paterson (ed.), Cambridge Univ. Press
-
A. A. RAZBOROV (1992). On submodular complexity measures. In Boolean Function Complexity, M. Paterson (ed.), London Math. Soc. Lecture Note Ser. 169, Cambridge Univ. Press, 76-83.
-
(1992)
London Math. Soc. Lecture Note Ser.
, vol.169
, pp. 76-83
-
-
Razborov, A.A.1
-
37
-
-
0348140122
-
A modification of Khrapchenko's method and its applications to bounds on the complexity of II-schemes and coding functions
-
in Russian
-
K. L. RYCHKOV (1985). A modification of Khrapchenko's method and its applications to bounds on the complexity of II-schemes and coding functions. Metody Diskret. Anal. 42, 91-98 (in Russian).
-
(1985)
Metody Diskret. Anal.
, vol.42
, pp. 91-98
-
-
Rychkov, K.L.1
-
38
-
-
0024001235
-
Vector sets for exhaustive testing of logic circuits
-
G. SEROUSSI & N. BSHOUTI (1988). Vector sets for exhaustive testing of logic circuits. IEEE Trans. Inform. Theory 34, 513-522.
-
(1988)
IEEE Trans. Inform. Theory
, vol.34
, pp. 513-522
-
-
Seroussi, G.1
Bshouti, N.2
-
39
-
-
0022043952
-
A complexity theory based on Boolean algebra
-
S. SKYUM & L. G. VALIANT (1985). A complexity theory based on Boolean algebra. J. Assoc. Comput. Mach. 32, 484-502.
-
(1985)
J. Assoc. Comput. Mach.
, vol.32
, pp. 484-502
-
-
Skyum, S.1
Valiant, L.G.2
-
41
-
-
0008516917
-
The gap between monotone and non-monotone circuit complexity is exponential
-
É. TARDOS (1987). The gap between monotone and non-monotone circuit complexity is exponential, Combinatorica 7, 141-142.
-
(1987)
Combinatorica
, vol.7
, pp. 141-142
-
-
Tardos, É.1
-
42
-
-
85039623622
-
Some complexity questions related to distributed computing
-
Atlanta, GA
-
A. YAO (1979). Some complexity questions related to distributed computing. In Proc. 11th Annual ACM Symposium on the Theory of Computing (Atlanta, GA), 209-213.
-
(1979)
Proc. 11th Annual ACM Symposium on the Theory of Computing
, pp. 209-213
-
-
Yao, A.1
|