메뉴 건너뛰기




Volumn 5747, Issue I, 2005, Pages 258-265

Comparison of decision tree classifiers with neural network and linear discriminant analysis classifiers for computer-aided diagnosis: A Monte Carlo simulation study

Author keywords

Artificial neural network; Classifier design; Decision tree; Finite sample performance; Linear discriminant analysis

Indexed keywords

CLASSIFIER DESIGN; DECISION TREE; FINITE SAMPLE PERFORMANCE; LINEAR DISCRIMINANT ANALYSIS;

EID: 23844513475     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.595761     Document Type: Conference Paper
Times cited : (3)

References (11)
  • 1
    • 0033461791 scopus 로고    scopus 로고
    • Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers
    • H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, "Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers," Medical Physics 26, 2654-2668, 1999.
    • (1999) Medical Physics , vol.26 , pp. 2654-2668
    • Chan, H.P.1    Sahiner, B.2    Wagner, R.F.3    Petrick, N.4
  • 2
    • 0033863591 scopus 로고    scopus 로고
    • Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size
    • B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. M. Hadjiiski, "Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size.," Medical Physics 27, 1509-1522, 2000.
    • (2000) Medical Physics , vol.27 , pp. 1509-1522
    • Sahiner, B.1    Chan, H.P.2    Petrick, N.3    Wagner, R.F.4    Hadjiiski, L.M.5
  • 3
    • 0022470978 scopus 로고
    • ROC methodology in radiologic imaging
    • C. E. Metz, "ROC methodology in radiologic imaging," Investigative Radiology 21, 720-733, 1986.
    • (1986) Investigative Radiology , vol.21 , pp. 720-733
    • Metz, C.E.1
  • 6
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • F. Provost and P. Domingos, "Tree induction for probability-based ranking," Machine Learning 52, 199-215, 2003.
    • (2003) Machine Learning , vol.52 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 8
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • T. J. Lim, W. Y. Loh, and Y. S. Shih, "A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms," Machine Learning 40, 203-228, 2000.
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.J.1    Loh, W.Y.2    Shih, Y.S.3
  • 9
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Machine Learning 36, 105-139, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 11
    • 0032525017 scopus 로고    scopus 로고
    • Maximum-likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data
    • C. E. Metz, B. A. Herman, and J. H. Shen, "Maximum-likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data," Statistics in Medicine 17, 1033-1053, 1998.
    • (1998) Statistics in Medicine , vol.17 , pp. 1033-1053
    • Metz, C.E.1    Herman, B.A.2    Shen, J.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.