메뉴 건너뛰기




Volumn 99, Issue 3, 2005, Pages 476-498

Unsupervised image segmentation using triplet Markov fields

Author keywords

Bayesian classification; Hidden Markov fields; Iterative conditional estimation; Mixture estimation; Pairwise Markov fields; Stochastic gradient; Triplet Markov fields; Unsupervised image segmentation

Indexed keywords

IMAGE PROCESSING; MARKOV PROCESSES; MATHEMATICAL MODELS; PARAMETER ESTIMATION; PROBABILITY DISTRIBUTIONS; REAL TIME SYSTEMS;

EID: 23844503626     PISSN: 10773142     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cviu.2005.04.003     Document Type: Article
Times cited : (47)

References (35)
  • 3
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag On the statistical analysis of dirty pictures J. R. Stat. Soc. Ser. B 48 1986 259 302
    • (1986) J. R. Stat. Soc. Ser. B , vol.48 , pp. 259-302
    • Besag, J.1
  • 4
    • 0003170297 scopus 로고
    • Unsupervised Bayesian classification, application to the forest of Paimpont (Brittany)
    • 1994/4, 1995/1-2
    • J.-M. Boucher, and P. Lena Unsupervised Bayesian classification, application to the forest of Paimpont (Brittany) Photo Interpretation 32 1994/4, 1995/1-2 1995 79 81
    • (1995) Photo Interpretation , vol.32 , pp. 79-81
    • Boucher, J.-M.1    Lena, P.2
  • 5
    • 84947610348 scopus 로고    scopus 로고
    • Unsupervised signal restoration using Copulas and Pairwise Markov chains
    • Saint Louis, Missouri, September 28-October 1
    • N. Brunel, W. Pieczynski, Unsupervised signal restoration using Copulas and Pairwise Markov chains, in: IEEE Workshop on Statistical Signal Processing (SSP 2003), Saint Louis, Missouri, September 28-October 1, 2003.
    • (2003) IEEE Workshop on Statistical Signal Processing (SSP 2003)
    • Brunel, N.1    Pieczynski, W.2
  • 6
    • 0024855884 scopus 로고
    • An iterative Gibbsian technique for reconstruction of m-ary images
    • B. Chalmond An iterative Gibbsian technique for reconstruction of m-ary images Pattern Recogn. 22 1989 747 761
    • (1989) Pattern Recogn. , vol.22 , pp. 747-761
    • Chalmond, B.1
  • 7
    • 0031248959 scopus 로고    scopus 로고
    • Estimation of generalized mixture and its application in image segmentation
    • Y. Delignon, A. Marzouki, and W. Pieczynski Estimation of generalized mixture and its application in image segmentation IEEE Trans. Image Process. 6 10 1997 1364 1375
    • (1997) IEEE Trans. Image Process. , vol.6 , Issue.10 , pp. 1364-1375
    • Delignon, Y.1    Marzouki, A.2    Pieczynski, W.3
  • 8
    • 0031257211 scopus 로고    scopus 로고
    • An equivalence of the em and ICE algorithm for exponential family
    • J.-P. Delmas An equivalence of the EM and ICE algorithm for exponential family IEEE Trans. Signal Process. 45 10 1997 2613 2615
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.10 , pp. 2613-2615
    • Delmas, J.-P.1
  • 9
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using Gibbs random fields
    • H. Derin, and H. Elliot Modeling and segmentation of noisy and textured images using Gibbs random fields IEEE Trans. Pattern Anal. Mach. Intell. 9 1987 39 55
    • (1987) IEEE Trans. Pattern Anal. Mach. Intell. , vol.9 , pp. 39-55
    • Derin, H.1    Elliot, H.2
  • 11
    • 0141613707 scopus 로고    scopus 로고
    • Hidden Markov random field model selection criteria based on mean field-like approximations
    • F. Forbes, and N. Peyrard Hidden Markov random field model selection criteria based on mean field-like approximations IEEE Trans. Pattern Anal. Mach. Intell. 25 9 2003 1089 1101
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.9 , pp. 1089-1101
    • Forbes, F.1    Peyrard, N.2
  • 12
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • S. Geman, and D. Geman Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images IEEE Trans. Pattern Anal. Mach. Intell. 6 1984 721 741
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 13
    • 0035247059 scopus 로고    scopus 로고
    • An introduction to hidden Markov models and Bayesian networks
    • Z. Ghahramani An introduction to hidden Markov models and Bayesian networks Int. J. Pattern Recogn. Artif. Intell. 15 1 2001 9 42
    • (2001) Int. J. Pattern Recogn. Artif. Intell. , vol.15 , Issue.1 , pp. 9-42
    • Ghahramani, Z.1
  • 15
    • 0041339533 scopus 로고    scopus 로고
    • Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study
    • M.V. Ibáñez, and A. Simó Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study Pattern Recogn. Lett. 24 14 2003 2377 2389
    • (2003) Pattern Recogn. Lett. , vol.24 , Issue.14 , pp. 2377-2389
    • Ibáñez, M.V.1    Simó, A.2
  • 16
    • 0033116536 scopus 로고    scopus 로고
    • Unsupervised parallel image classification using Markovian models
    • Z. Kato, J. Zeroubia, and M. Berthod Unsupervised parallel image classification using Markovian models Pattern Recogn. 32 1999 591 604
    • (1999) Pattern Recogn. , vol.32 , pp. 591-604
    • Kato, Z.1    Zeroubia, J.2    Berthod, M.3
  • 17
    • 0024715149 scopus 로고
    • Simultaneous parameter estimation and segmentation of Gibbs random fields
    • S. Lakshmanan, and H. Derin Simultaneous parameter estimation and segmentation of Gibbs random fields IEEE Trans. Pattern Anal. Mach. Intell. 11 8 1989 799 813
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.8 , pp. 799-813
    • Lakshmanan, S.1    Derin, H.2
  • 18
    • 23644453018 scopus 로고    scopus 로고
    • Unsupervised restoration of hidden non stationary Markov chains using evidential priors
    • to appear
    • P. Lanchantin, W. Pieczynski, Unsupervised restoration of hidden non stationary Markov chains using evidential priors, IEEE Trans. Signal Process. 53 (8) (2005) to appear.
    • (2005) IEEE Trans. Signal Process , vol.53 , Issue.8
    • Lanchantin, P.1    Pieczynski, W.2
  • 19
    • 84950881632 scopus 로고
    • Probabilistic solution of ill-posed problems in computational vision
    • J. Marroquin, S. Mitter, and T. Poggio Probabilistic solution of ill-posed problems in computational vision J. Am. Stat. Assoc. 82 1987 76 89
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 76-89
    • Marroquin, J.1    Mitter, S.2    Poggio, T.3
  • 21
    • 0036475031 scopus 로고    scopus 로고
    • Double Markov random fields and Bayesian image segmentation
    • D. Melas, and S.P. Wilson Double Markov random fields and Bayesian image segmentation IEEE Trans. Signal Process. 50 2 2002 357 365
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.2 , pp. 357-365
    • Melas, D.1    Wilson, S.P.2
  • 22
    • 0034229994 scopus 로고    scopus 로고
    • Sonar image segmentation using an unsupervised hierarchical MRF model
    • M. Mignotte, C. Collet, P. Pérez, and P. Bouthémy Sonar image segmentation using an unsupervised hierarchical MRF model IEEE Trans. Image Process. 9 7 2000 1216 1231
    • (2000) IEEE Trans. Image Process. , vol.9 , Issue.7 , pp. 1216-1231
    • Mignotte, M.1    Collet, C.2    Pérez, P.3    Bouthémy, P.4
  • 23
    • 0036205426 scopus 로고    scopus 로고
    • Comparison of deconvolution techniques using a distribution mixture parameter estimation: Application in single photon emission computed tomography imagery
    • M. Mignotte, J. Meunier, J.-P. Soucy, and C. Janicki Comparison of deconvolution techniques using a distribution mixture parameter estimation: application in single photon emission computed tomography imagery J. Electron. Imaging 11 1 2002 11 25
    • (2002) J. Electron. Imaging , vol.11 , Issue.1 , pp. 11-25
    • Mignotte, M.1    Meunier, J.2    Soucy, J.-P.3    Janicki, C.4
  • 24
    • 0038498440 scopus 로고    scopus 로고
    • Markov random fields and images
    • P. Pérez Markov random fields and images CWI Q. 11 4 1998 413 437
    • (1998) CWI Q. , vol.11 , Issue.4 , pp. 413-437
    • Pérez, P.1
  • 25
    • 0000131927 scopus 로고
    • Statistical image segmentation
    • W. Pieczynski Statistical image segmentation Mach. Graph. Vision 1 1/2 1992 261 268
    • (1992) Mach. Graph. Vision , vol.1 , Issue.12 , pp. 261-268
    • Pieczynski, W.1
  • 26
    • 0000703338 scopus 로고    scopus 로고
    • Pairwise Markov random fields and segmentation of textured images
    • W. Pieczynski, and A.-N. Tebbache Pairwise Markov random fields and segmentation of textured images Mach. Graph. Vision 9 3 2000 705 718
    • (2000) Mach. Graph. Vision , vol.9 , Issue.3 , pp. 705-718
    • Pieczynski, W.1    Tebbache, A.-N.2
  • 30
    • 0037258870 scopus 로고    scopus 로고
    • An automatic approach to the detection and extraction of mine features in sidescan sonar
    • S. Reed, Y. Petillot, and J. Bell An automatic approach to the detection and extraction of mine features in sidescan sonar IEEE J. Oceanic Eng. 28 1 2003 90 105
    • (2003) IEEE J. Oceanic Eng. , vol.28 , Issue.1 , pp. 90-105
    • Reed, S.1    Petillot, Y.2    Bell, J.3
  • 31
    • 0031189036 scopus 로고    scopus 로고
    • Parameter estimation in hidden fuzzy Markov random fields and image segmentation
    • F. Salzenstein, and W. Pieczynski Parameter estimation in hidden fuzzy Markov random fields and image segmentation Graph. Models Image Process. 59 4 1997 205 220
    • (1997) Graph. Models Image Process. , vol.59 , Issue.4 , pp. 205-220
    • Salzenstein, F.1    Pieczynski, W.2
  • 34
    • 0037410691 scopus 로고    scopus 로고
    • MRF parameter estimation by an accelerated method
    • Y. Yu, and Q. Cheng MRF parameter estimation by an accelerated method Pattern Recogn. Lett. 24 9-10 2003 1251 1259
    • (2003) Pattern Recogn. Lett. , vol.24 , Issue.9-10 , pp. 1251-1259
    • Yu, Y.1    Cheng, Q.2
  • 35
    • 0000355193 scopus 로고
    • Parametric inference for imperfectly observed Gibbsian fields
    • L. Younes Parametric inference for imperfectly observed Gibbsian fields Probab. Theory Relat. Fields 82 1989 625 645
    • (1989) Probab. Theory Relat. Fields , vol.82 , pp. 625-645
    • Younes, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.