메뉴 건너뛰기




Volumn 4, Issue 3, 2004, Pages 823-831

Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays

Author keywords

Coincidence degree; Discrete predator prey model; Periodic solution; Time delay

Indexed keywords


EID: 2942662269     PISSN: 15313492     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcdsb.2004.4.823     Document Type: Conference Paper
Times cited : (12)

References (12)
  • 1
    • 85084168098 scopus 로고    scopus 로고
    • Difference equations and inequalities: Theory, mathods and applications
    • Marcel Dekker, New York
    • R.P. Agarwal, "Difference Equations and Inequalities: Theory, Mathods and Applications," Monographs and textbooks in pure and applied mathematics, No. 228, Marcel Dekker, New York, 2000.
    • (2000) Monographs and Textbooks in Pure and Applied Mathematics , vol.228
    • Agarwal, R.P.1
  • 2
    • 0030947323 scopus 로고    scopus 로고
    • Delayed density dependence and the stability of interacting populations and subpopulations
    • E.E. Crone, DELAYED DENSITY DEPENDENCE AND THE STABILITY OF INTERACTING POPULATIONS AND SUBPOPULATIONS, Theoret. Population Biol., 51(1997), 67-76.
    • (1997) Theoret. Population Biol. , vol.51 , pp. 67-76
    • Crone, E.E.1
  • 3
    • 2642587972 scopus 로고    scopus 로고
    • Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system
    • M. Fan and K. Wang, PERIODIC SOLUTIONS OF A DISCRETE TIME NONAUTONOMOUS RATIO-DEPENDENT PREDATOR-PREY SYSTEM, Math. Comput. Model., 35(2002), 951-961.
    • (2002) Math. Comput. Model. , vol.35 , pp. 951-961
    • Fan, M.1    Wang, K.2
  • 6
    • 0033192703 scopus 로고    scopus 로고
    • Permannence and global attractivity for lotka-volterra difference systems
    • Z. Lu and W. Wang, PERMANNENCE AND GLOBAL ATTRACTIVITY FOR LOTKA-VOLTERRA DIFFERENCE SYSTEMS, J. Math. Biol., 22(1999), 269-282.
    • (1999) J. Math. Biol. , vol.22 , pp. 269-282
    • Lu, Z.1    Wang, W.2
  • 8
    • 0036722331 scopus 로고    scopus 로고
    • Harmless delays for permanence and impersistence of a lotka-volterra discrete predator-prey system
    • Y. Saito, T. Hara, and W.B. Ma, HARMLESS DELAYS FOR PERMANENCE AND IMPERSISTENCE OF A LOTKA-VOLTERRA DISCRETE PREDATOR-PREY SYSTEM, Nonlinear Anal., 50(2002), 703-715.
    • (2002) Nonlinear Anal. , vol.50 , pp. 703-715
    • Saito, Y.1    Hara, T.2    Ma, W.B.3
  • 9
    • 0035315099 scopus 로고    scopus 로고
    • A necessary and sufficient condition for permanence of a lotka-volterra discrete system with delays
    • Y. Saito, W. Ma, and T. Hara, A NECESSARY AND SUFFICIENT CONDITION FOR PERMANENCE OF A LOTKA-VOLTERRA DISCRETE SYSTEM WITH DELAYS, J. Math. Anal. Appl., 256(2001), 162-174.
    • (2001) J. Math. Anal. Appl. , vol.256 , pp. 162-174
    • Saito, Y.1    Ma, W.2    Hara, T.3
  • 10
    • 0033102348 scopus 로고    scopus 로고
    • Global stability of discrete models of lotka-volterra type
    • W. Wang and Z. Lu, GLOBAL STABILITY OF DISCRETE MODELS OF LOTKA-VOLTERRA TYPE, Nonlinear Anal., 35(1999), 1019-1030.
    • (1999) Nonlinear Anal. , vol.35 , pp. 1019-1030
    • Wang, W.1    Lu, Z.2
  • 11
    • 0035667636 scopus 로고    scopus 로고
    • Global stability of discrete population models with delays and fluctuating environment
    • W.D. Wang, G. Mulone, F. Salemi, and V. Salone, GLOBAL STABILITY OF DISCRETE POPULATION MODELS WITH DELAYS AND FLUCTUATING ENVIRONMENT, J. Math. Anal. Appl., 264(2001), 147-167.
    • (2001) J. Math. Anal. Appl. , vol.264 , pp. 147-167
    • Wang, W.D.1    Mulone, G.2    Salemi, F.3    Salone, V.4
  • 12
    • 0002280685 scopus 로고    scopus 로고
    • Periodic solutions of a single psecies discrete population model with periodic harvest/stock
    • R.Y. Zhang, Z.C. Wang, Y. Chen and J. Wu, PERIODIC SOLUTIONS OF A SINGLE PSECIES DISCRETE POPULATION MODEL WITH PERIODIC HARVEST/STOCK, Comput. Math. Appl., 39(2000), 77-90.
    • (2000) Comput. Math. Appl. , vol.39 , pp. 77-90
    • Zhang, R.Y.1    Wang, Z.C.2    Chen, Y.3    Wu, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.